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Abstract

This paper is concerned with testing the time series implications of the capital asset
pricing model (CAPM) due to Sharpe (1964) and Lintner (1965), when the number of
securities, N , is large relative to the time dimension, T , of the return series. In the
case of cross-sectionally correlated errors, using a threshold estimator of the average
squares of pair-wise error correlations a test is proposed and is shown to be valid even
if N is much larger than T . Monte Carlo evidence show that the proposed test works
well in small samples. The test is then applied to all securities in the S&P 500 index
with 60 months of return data at the end of each month over the period September
1989-September 2011. Statistically signi�cant evidence against Sharpe-Lintner CAPM
is found mainly during the recent �nancial crisis. Furthermore, a strong negative
correlation is found between a twelve-month moving average p-values of the test and
the returns of long/short equity strategies relative to the return on S&P 500 over the
period December 2006 to September 2011, suggesting that abnormal pro�ts are earned
during episodes of market ine¢ ciencies.
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1 Introduction

This paper is concerned with testing the time series implications of the capital asset pricing
model (CAPM) due to Sharpe (1964) and Lintner (1965), when the number of securities,
N , under consideration is large relative to the time dimension, T , of the return series.
The Sharpe-Lintner CAPM predicts that expected excess return (measured relative to
the risk-free rate) on any given security or a given portfolio of securities is constant of
proportionality to the expected excess return on the market portfolio, with the constant of
the proportionality, �, being security/portfolio speci�c.

There exists a large literature in empirical �nance that tests various implications of
Sharpe-Lintner model. Cross sectional as well as time series tests of the model have been
proposed and applied in many di¤erent contexts. Using time series regressions, Jensen
(1968) was the �rst to propose using standard t-statistics to test the null hypothesis that
the intercept, �i, in the Ordinary Least Squares (OLS) regression of the excess return of
a given security, i, on the excess return of the market portfolio is zero.1 The test can be
applied to individual securities as well as to portfolios.

However, when a large number of securities are under consideration the individual test
outcomes are di¢ cult to interpret. Due to cross-sectional dependence of the errors in
the CAPM regressions, the individual t-statistics are correlated which makes it di¢ cult
to control the overall size of the test. Gibbons, Ross and Shaken (1989, GRS) propose an
exact multivariate version of the test which deals with this problem if the CAPM regression
errors are normally distributed and N < T . This is the standard test used in the literature,
but its application has been con�ned to testing the market e¢ ciency of a relatively small
number of portfolios, typically 20� 30, using monthly returns observed over relatively long
time periods. But grouping of securities into portfolios can lead to loss of information and
reduced power of the test, and under certain circumstances can also result in endogeneity
problems ruled out in the multivariate GRS testing procedure. The use of large T as a way
of ensuring that N < T , is also likely to increase the possibility of structural breaks in the
�0s that could in turn adversely a¤ect the performance of the GRS test.

It is clearly desirable to develop tests of market e¢ ciency that can deal with a large
number of securities, ideally over short time periods so that the problem of time variations
in �0s can be somewhat minimized. It is also important that such tests are reasonably
robust to non-normal errors, particularly as it is more likely that one would encounter
non-normal errors in the case of CAPM regressions for individual securities as compared
to regressions estimated on portfolios comprising a large number of securities.

Out of the two main assumptions that underlie the GRS test, the literature has focussed
on the implications of non-normal errors for the GRS test, and ways of allowing for non-
normal errors when testing �i = 0. A­ eck-Graves and McDonald (1989) were amongst the
�rst to consider the robustness of the GRS test to non-normal errors who, using simulation
techniques, �nd that the size and power of GRS test can be adversely a¤ected if the
departure from non-normality of the errors is serious, but conclude that the GRS test
is ".. reasonably robust with respect to typical levels of nonnormality." (p.889). More
recently, Beaulieu, Dufour and Khalaf (2007, BDK) and Gungor and Luger (2009, GL)
have proposed tests of �i = 0 that allow for non-normal errors, but retain the restriction
N < T . BDK develop an exact test which is applicable to a wide class of non-Gaussian
error distributions, and use Monte Carlo simulations to achieve the correct size for their
test. Gungor and Luger (2009) propose two distribution-free nonparametric sign tests in

1Cross sectional tests of CAPM have been considered by Douglas (1968), Black, Jensen and Scholes
(1972), and Fama and Macbeth (1973), among others. An early review of literature can be found in Jensen
(1972), and more recently in Fama and French (2004).
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the case of single factor models that allow the error distribution to be non-normal but
require it to be cross-sectionally independent and conditionally symmetrically distributed
around zero. In a more recent paper Gungor and Luger (2011) extend their analysis to
models with more than one factor.2

Our primary focus in this paper is on development of multivariate tests of �i = 0; for
i = 1; 2; :::; N , when N > T . We begin by assuming that the errors of CAPM regressions
are Gaussian with a known variance-covariance matrix, V, and use recent advances from
the analysis of large panels to develop an exact T test which converges to a standard
normal variate as N !1.3 We refer to this test as Jensen�s � test of CAPM and denote
it by J�(V). To make the J� test operational a suitable estimator of V is required. But
when N > T this is possible only if the o¤-diagonal elements of V are suitably restricted.
In the case of CAPM regressions where the errors are at most weakly cross-sectionally
correlated, this can be achieved by adaptive thresholding which sets to zero elements of
the estimator of V , say V̂, that are su¢ ciently small. Alternatively, feasible estimators of
V can be obtained by Bayesian or classical shrinkage procedures that scale down the o¤-
diagonal elements of V̂ relative to its diagonal elements.4 Fan, Liao and Mincheva (2012)
consider consistent estimation of V in the context an approximate factor model, identical
to the one considered in this paper. They assume V is sparse and propose an adaptive
thresholding estimator, �V, which they show to be positive de�nite with satisfactory small
sample properties. However, as we show, using �V instead of V in the construction of the
J�(V) test yields asymptotically valid test of CAPM only if N ln(N)=T ! 0, that rules
out cases where N > T . It seems also unlikely that the problem can be resolved by using
other estimators of V.

An alternative testing strategy that we follow in this paper is to initially ignore the o¤-
diagonal elements ofV and base the test of CAPM on J�(D); whereD is a diagonal matrix,
having the same diagonal elements as V, and then correct the resultant test statistic for the
non-zero o¤-diagonal elements of V. The test can be viewed as a robust version of J�(V),
in cases where the o¤-diagonal elements of V become relatively less important as N !1.
This condition prevails when the errors of CAPM are cross-sectionally weakly correlated,
an assumption that underlies Chamberlain�s (1983) approximate factor model formulation
of the capital and arbitrage pricing models. More formally, it is established that a test
based on J�(D) will be asymptotically N(0; 1) for any �xed T and as N ! 1, under the
null hypothesis of �i = 0, for all i, if N�1Tr(R2) is bounded, where R = D�1=2VD�1=2.

Based on these results, two new tests of CAPM are proposed that exploit recent ad-
vances on the analysis of large panel data models that are valid even if N > T . When the
errors are Gaussian and cross-sectionally independent, a test, denoted by Ĵ�;1, is proposed
which is N(0; 1) as N ! 1, with T �xed. Even when the errors are non-Gaussian we
are still able to show that Ĵ�;1 tends to N(0; 1), so long as the errors are cross-sectionally
independent and N=T 3 ! 0, with N and T ! 1; jointly. In the case of cross-sectionally

2Bossaerts, Plot and Zame (2007) provide a novel GMM test of CAPM which does not require large
T , but is designed for the analysis of experimental data on a few risky assets held across a relatively large
number of subjects. It is interesting to see if their approach can be adapted to the analysis of historical
observations of the type considered in this paper.

3The basic idea behind the test proposed here was �rst used in Im, Pesaran and Shin (2003) to develop
a unit root test in large panels.

4There exists a large literature in statistics and econometrics on estimation of high-dimensional co-
variance matrices which use regularization techniques such as shrinkage, adaptive thresholding or other
dimension-reducing procedures that impose certain structures on the variance matrix such as sparsity, or
factor structures. See, for example, Wong, Carter and Kohn (2003), Ledoit and Wolf (2004), Huang, Liu,
Pourahmadi, and Liu (2006), Bickel and Levina (2008), Fan, Fan and Lv (2008), and Fan, Liao and Mincheva
(2012). It is also possible to employ the design-free estimator of the covariance matrix recently proposed
by Abadir, Distaso and Zikes (2011).
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correlated errors, using a threshold estimator of the average squares of pair-wise error cor-
relations, a modi�ed version of Ĵ�;1, denoted by Ĵ�;2, is proposed. A distinguishing feature
of our approach is that estimation of an invertible high dimensional error covariance matrix
is not required.

Small sample properties of the Ĵ�;1 and Ĵ�;2 tests are investigated using Monte Carlo
experiments designed speci�cally to match the correlations, volatilities, and other distri-
butional features (skewness and kurtosis) of the residuals of Fama-French three factor
regressions of individual securities in the Standard & Poor 500 (S&P 500) index. We con-
sider the test results for the following eight sample size combinations, T = 60 and 100; and
N = 50; 100; 200 and 500. The Ĵ� tests perform remarkably well even for N = 500 and
T = 60, with size very close to the chosen nominal value of 5%, and satisfactory power.
Size and power of the GRS test are also compared with those of Ĵ� tests in the case of
experiments with N = 50 < T = 60, 100 for which the GRS statistics can be computed.
Interestingly, we �nd that the Ĵ� tests have a higher power than the GRS test in most
experiments. This could be due to the non-normal errors adversely a¤ecting the GRS test,
as reported by A­ eck-Graves and McDonald (1989) in their simulation exercise. Also see
A­ eck-Graves and McDonald (1990).

The Ĵ� tests also outperform the nonparametric sign tests of Gungor and Luger (2009)
that can be implemented even if N > T and are designed to deal with non-normal errors.
The sign tests are shown to over-reject, for some designs quite substantially, and have lower
power as compared to the Ĵ� tests.

Encouraged by the satisfactory performance of the Ĵ� tests, even in cases where N is
much larger than T , we apply the Ĵ�;2 test (which allows for both non-Gaussian and weakly
cross correlated errors) to all securities in the S&P 500 index with 60 months of return data
at the end of each month spanning the period September 1989 to September 2011. In this
way we minimize the possibility of survivorship bias since the sample of securities considered
at the end of each month is decided in real time. For S&P 500 as a whole we report the Ĵ�;2
test statistics for a single and a three Fama-French factor model over the period September
1989 to September 2011 and �nd statistically signi�cant evidence against Sharpe-Lintner
CAPM only during the recent �nancial crisis. But we �nd prolonged periods of low p-values
for the Ĵ�;2 test in non-crisis periods suggesting considerable time variations in the degree
of market e¢ ciency.

Finally, we examine if there exists any relationship between the p-values of the Ĵ�;2
test and excess returns on long/short equity hedge funds (relative to the return on S&P
500). A priori one would expect a reverse relationship between market e¢ ciency and excess
return of an investment strategy, with excess returns being low during periods of market
e¢ ciency (high p-values) and vice versa. In fact, we �nd a strong negative correlation
between a twelve-months moving average p-values of the Ĵ�;2 test and excess returns of
long/short equity strategies over the period December 2006 to September 2011, suggesting
that abnormal pro�ts are earned during episodes of market ine¢ ciencies.

The outline of the rest of the paper is as follows. Section 2 sets out the panel data model
for the analysis of CAPM, and discusses some of the limitations of the GRS test. Section
3 proposes the J� test for large N panels, derives its asymptotic distribution. Section 4
proposes operational versions of the J� test. Section 5 reports small sample properties of
Ĵ�, GRS and nonparametric sign tests. Section 6 presents the empirical applications. Some
concluding remarks are provided in Section 7.

Throughout the paper, �min(A) and �max(A) will be used for the minimum and maxi-

mum eigenvalues of theN�N matrixA = (aij); T r(A) for its trace, kAk1 = max1�j�N
nPN

i=1 jaij j
o

for its maximum absolute column sum norm, kAk1 = max1�i�N
nPN

j=1 jaij j
o
for its
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maximum absolute row sum norm, kAkF =
p
Tr(A0A) for its Frobenius norm, and

kAk = �1=2max(A0A) for its spectral norm. We also note that for a vector �, k�k = (�0�)1=2,
K and � denote �nite and small positive constants.

2 The Panel Regression Model: Some Preliminaries and the
GRS Test

The individual return regressions can be written in the form of the following panel regres-
sions

yit = �i + �
0
ift + uit; for i = 1; 2; :::; N ; t = 1; 2; :::; T; (1)

where the m� 1 vector of factors, ft, are observed. Stacking by time series observations we
have

yi: = �i�T + F�i + ui:; (2)

where yi: = (yi1; yi2; :::; yiT )0, �T = (1; 1; :::; 1)0, F0= (f1; f2; :::; fT ), and ui: = (ui1; ui2; :::; uiT )
0.

Stacking by cross-sectional observations we have

yt = �+Bf t + ut; (3)

where yt = (y1t; y2t; :::; yNt)0, � = (�1; �2; :::; �N )0,B = (�1,�2; :::;�N )
0 and ut = (u1t; u2t; :::; uNt)0:

Assumption 1: The common factors, ft, are distributed independently of the errors,
uit0 for all i, t and t0, T�1G0G; with G =(F; �T ) ; is a positive de�nite matrix for all T ,
and as T !1, and � 0TMF�T > 0, where MF = IT � F (F0F)�1F0.

Assumption 2: ut s IIDN(0;V), where V is an N �N symmetric positive de�nite
matrix.

Assumption 1 is standard in the literature on tests of CAPM. It is likely to be satis�ed
when i refers to individual securities. However, it is also often invoked when i refers to
sub-market portfolios, although in such cases it is less likely to hold since the left and
right hand side variables could end up with sizeable common components. Assumption 2 is
needed for exact sample tests of CAPM, although as was pointed out in the Introduction,
Beaulieu, Dufour and Khalaf (2007) have proposed a bootstrap procedure that allows exact
test of CAPM under certain departures from error normality. Assumption 2 also implies
that errors, uit; are serially uncorrelated for each uit and across the pair of errors uit and
ujt, namely E(uitujt0) = 0 for all i, j;and t 6= t0. A non-Gaussian version of Assumption 2
will be considered below.

Jensen�s � test of CAPM are based on estimates of �i which can be obtained e¢ ciently
by univariate OLS regressions, given by

�̂i = y
0
i:

�
MF�T
� 0TMF�T

�
.

This is an important result and follows since (2) is a seemingly unrelated regression equation
(SURE) speci�cation with the same set of regressors across all the N securities. It is also
easily seen that

�̂i =
�
�i�

0
T + �

0
iF
0 + u0i:

�� MF�T
� 0TMF�T

�
= �i + u

0
i:c, for i = 1; 2; ::; N;

with
c =MF�T =�

0
TMF�T : (4)
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Writing this in matrix notation we have

�̂ = �+

0BBB@
u01:c
u02:c
...

u0N:c

1CCCA
where u0i:c =

PT
t=1 uitct; and ct is the t

th element of c. Hence

�̂ = �+
TX
t=1

utct, (5)

where as before ut = (u1t; u2t; :::; uNt)
0. Hence, under Assumptions 1 and 2,

�̂ vN
�
�;

1

� 0TMF�T
V

�
:

Also in the case where T � N +m+ 1, an unbiased and invertible estimator of V is given
by ( T

T�m�1)V̂, where V̂ is the sample covariance matrix estimator

V̂ =T�1
XT

t=1
ûtû

0
t; (6)

ût = (û1t; û2t; :::; ûNt)
0, ûit is the OLS residual from the regression of yit on an intercept

and ft. Under Assumptions 1 and 2, ût have a multivariate normal distribution with zero
means, �̂ and ût are independently distributed, and hence using standard results from
multivariate analysis it follows that (see, for example, Theorem 5.2.2 in Anderson (2003))

Ŵ� =
T �N �m

N

�
� 0TMF�T

T

�
(�̂��)0 V̂�1 (�̂��)

is distributed exactly as a non-central F distribution with (T � N � m) and N degrees

of freedom, and the non-centrality parameter �2� =
T�N�m

N

�
� 0TMF �T

T

�
�0V�1�. Under

H0 : � = 0,

Ŵ0 =
T �N �m

N

�
� 0TMF�T

T

�
�̂0V̂�1�̂; (7)

which is the same as the GRS statistic (see p.1124 of GRS),

GRS = Ŵ0 =
T �N �m

N

�
1 +�f 0
̂�1�f

��1
�̂0V̂�1�̂, (8)

where �f = T�1
PT
t=1 ft, and 
̂ = T

�1PT
t=1(ft��f)(ft��f)0. It is easily seen that�

1 +�f 0
̂�1�f
��1

= T�1
�
� 0TMF�T

�
:

As noted in the Introduction, the single most important limiting feature of the GRS and
other related tests proposed in the literature is the requirement that T must be larger than
N . In applications where GRS is used the individual securities are grouped into portfolios
and the GRS test is then typically applied to 20-30 portfolios over relatively long time
periods. But grouping of individual securities is likely to result in loss of power. To see
this suppose that Np of the N securities are grouped using the portfolio weights wp such
that � 0Nwp = 1 for p = 1; 2; :::; P; and w

0
pws = 0 for p 6= s, with

PP
p=1Np = N . The GRS
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test is then applied to the P portfolio excess returns de�ned by w0pyt, for p = 1; 2; :::; P;
where P is a small fraction of N . The null hypothesis of market e¢ ciency applied to these
P portfolios is given by

Hp
0 : w

0
p� = 0, p = 1; 2; :::; P

as compared to H0 : � = 0 used when all the underlying securities are considered individu-
ally. It is clear that � = 0 implies w0p� = 0, but not vice versa. Since �i can take positive
as well as negative values, failure to reject Hp

0 does not necessarily imply that we shall also
fail to reject H0. It is quite possible that H0 is rejected, but H

p
0 is not.

A testing strategy based on portfolios rather than individual securities can also be
subject to an endogeneity problem, if Np=Nm ! cp, for some p, where cp > 0, and Nm is
the total number of assets used to form the return on the market portfolio. In this case
the excess return on the portfolio p with cp > 0 will be a non-negligible component of the
excess return on the market portfolio, and a regression of the former on the latter is likely
to be subject to the endogeneity problem. In the case of individual securities where Np = 1,
the endogeneity bias will be of order 1=Nm which is likely to be negligible if, as Roll (1977)
argues, the market portfolio is chosen to cover a su¢ ciently large number of assets, such
that 1=Nm is su¢ ciently small.

The above di¢ culties can be somewhat mitigated if T and Nm can be chosen to be
su¢ ciently large, since this allows the investigator to include a larger number of portfolios
in the GRS test, without becoming unduly subject to the endogeneity problem. But due
to exit and entry of �rms in the market and the possibility of structural change in the
parameters of the return regressions, the use of T large can present a new type of bias
with unpredictable consequences for the test outcomes. Therefore, it is clearly desirable to
develop tests of market e¢ ciency that can be applied to a very large number of individual
securities over relatively short time periods, which inevitably lead to cases where T < N .

Even in cases where N < T , the power of the GRS test could be compromised since
it assumes V to be unrestricted, whilst in the context of CAPM regressions the errors are
at most weakly correlated, which places restrictions on the o¤-diagonal elements of V and
its inverse.5 As we shall see below, a test that exploits restrictions implied by the weak
cross-sectional correlation of the errors is likely to have much better power properties than
the GRS test that does not make use of such restrictions. It is also important to bear in
mind that being a multivariate F test, the power of the GRS test is primarily driven by T ,
whilst for the analysis of a large number of assets or portfolios we need tests that have the
correct size and are powerful for large N .

3 J� Tests for Large N Panels

Building on some of the preliminary derivations set out above, we now introduce the basic
idea behind our test. To focus on the main issues involved, initially we assume that V is a
known positive de�nite matrix and consider the following version of the GRS statistic, as
set out in (7),

Wv =
�
� 0TMF�T

�
�̂0V�1�̂; (9)

where we have dropped the degrees of freedom adjustment term and replaced V̂ by its
true value. Consider now the asymptotic distribution of Wv for a �xed T > m + 1, with
N !1. Since V is a positive de�nite symmetric matrix it has the Cholesky decomposition
V = QQ0, where Q is a non-singular N �N lower triangular matrix. The errors of CAPM

5A similar conclusion is reached under the approximate factor model advanced in Chamberlain (1983).
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regressions can now be written as
ut = Q"t; (10)

where "t= ("1t; "2t; ::::; "Nt)0. Using this decomposition and (5), we have

Wv =
�
� 0TMF�T

�
�̂
0
�̂;

�̂ = �+
XT

t=1
ct"t: (11)

where �̂ = Q
�1
�̂, and � = Q�1�. Under the null hypothesis H0 : �i = 0 for all i,

Wv = x
0
TxT ;

where
xT =

�
� 0TMF�T

�1=2XT

t=1
ct"t; (12)

and recall that ct is the tth element of c given by (4).
To derive the asymptotic distribution of Wv and related statistics, to be discussed

below, we consider the following variant of Assumption 2, and introduce Assumption 3
which governs the degree of cross-sectional dependence in the errors, uit:

Assumption 2a: ut s IID(0;V), where V is an N � N symmetric positive de�nite
matrix, such that V = QQ0, and "t= ("1t; "2t; ::::; "Nt)0 = Q�1ut. f"itg is an IID process
over i and t, with means zero and unit variances, and for some � > 0, E(j"itj4+�) exists, for
all i and t.

Assumption 3: Q and Q�1 are non-singular lower triangular matrices with bounded
absolute maximum column and row sum matrix norms.

Assumption 2a allows the errors to be non-Gaussian. Assumption 3 ensures that the
errors are weakly correlated in the sense de�ned by Chudik, Pesaran and Tosetti (2011).
This is also in line with the assumption of approximate factor model analyzed by Cham-
berlain (1983). Note that under Assumption 3 kVk1 = kVk1 < K <1, 0 < �min(V�1) =
�max(V) � kVk1 < K < 1, and 0 < �min(V) = �max(V

�1) �


V�1



1
< K < 1. The

above assumptions also ensure that supi(�
2
i ) < K <1, and infi(�2i ) > 0, for all i:6

As with the panel testing strategy developed in Im et al. (2003), a standardized version
of Wv can now be considered. Using results in Appendix A, under Assumptions 1 and 2a,
we have7

E (Wv) = N;

V ar (Wv) = 2N

�
1 +

1

2
�
2;"qT

�
;

where

qT =

�XT

t=1
c4t

�
=

�XT

t=1
c2t

�2
= Op(T

�1) (13)

�
2;" = E(
2;"i) <1; and 
2;"i = E("4it)� 3. Consider now the standardized test statistic

J�(V) =
(� 0TMF�T ) �̂

0V�1�̂�N�
1 + 1

2�
2;"qT
�1=2p

2N
;

6See, for example, Horn and Johnson (1985).
7The results can be obtained by setting A = IN in (48) and (50) in Appendix A.
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and note that under H0 : �i = 0;for all i;

J�(V) =
N�1=2 (x0TxT �N)�
2 + �
2;"qT

�1=2 ;

which has mean zero and a unit variance for any N and T > m + 1. It is also easily
established that the central limit theorem for linear-quadratic forms in Kelejian and Prucha
(2001,KP) is applicable to x0TxT ; and under Assumptions 1 and 2

a we have

J�(V)!d N(0; 1), as N !1; for any T > m+ 1:

It is interesting to note that this results does not require Assumption 3, so long as V is a
positive de�nite matrix. The conditions of Theorem 1 of KP require that the ith element
of xT to be independent across i, and N�1V ar(Wv) > K for some K > 0. Notice that in
this application Assumption 2 of KP is trivially satis�ed since in our application matrix
An that enters KP�s theorem is equal to IN . Note also that

N�1V ar(Wv) = 2 + �
2;"qT ;

and under Assumption 2a; we have
���
2;"�� < supi(
2;"i) <1. For a �nite T , qT > 0, and if

it is further assumed that �
2;" > 0, (which is likely to be met in most �nance applications)
then, N�1V ar(Wv) > K > 0, as required. Also noting that E("4it) > 0, then �
2;" > �3, and
since qT > 0 and of order T�1, then we would expect 2 + �
2;"qT > 0; when T is relatively
large.

The J� test allows the degree of non-Gaussianity to vary across securities, with the test
depending on the average excess kurtosis, �
2;", and not the individual kurtosis, 
2;"i. In the
case where the errors are Gaussian, �
2;" = 0 and the denominator of J� statistic reduces top
2N . Also since qT = Op(T�1), then as be expected, the dependence of J� on �
2;" declines

with T .
To obtain a better understanding of the asymptotic distribution of J�, consider the

Gaussian case and note that under Gaussian errors

J�(V) =
1p
N

XN

i=1

�
x2iT � 1p

2

�
where xiT is the ith element of xT . In this case xiT , being a linear combination of
Gaussian errors, it is distributed as N(0; 1), independently of xjT for all i 6= j. Then
ziT =

1p
2

�
x2iT � 1

�
is a (0; 1) random variable, which is also distributed independently of

zjT for i 6= j. Hence, for a �xed T > m+ 1 and as N !1; we have

1p
N

XN

i=1

�
x2iT � 1p

2

�
!d N(0; 1): (14)

The above results are summarized in the following theorem.

Theorem 1 Consider the CAPM regressions, (1), suppose Assumptions 1 and 2a hold,
and V is known. Then under H0 : �i = 0 for all i; and as N !1, for any T > m+ 1

J�(V) =
N�1=2 �(� 0TMF�T ) �̂

0V�1�̂�N
��

2 + �
2;"qT
�1=2 !d N(0; 1), (15)

where �̂ = (�̂1; �̂2; :::; �̂N )0, �̂i is the OLS estimator of �i in (1), �
2;" = E(
2;"i) > 0,

2;"i = E("

4
it)� 3, "t = Q�1ut, and qT = Op(T�1) is de�ned by (13).
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Using a similar line of reasoning, it is also relatively easy to derive the asymptotic
distribution of J� under the alternative hypothesis, H1 : �i 6= 0, for some i. Using (11) we
have

�̂0V�1�̂ = �̂
0
�̂ =

�
�+

XT

t=1
ct"t

�0�
�+

XT

t=1
ct"t

�
;

and

J�(V) = J1;�(V) +
N1=2 (� 0TMF�T )�

0��
2 + �
2;"qT

�1=2 ;

where

J1;�(V) =
x0TxT + 2 (�

0
TMF�T )

1=2�0xT �N�
1 + 1

2�
2;"qT
�1=2p

2N
:

Applying the KP central limit theorem for quadratic-linear forms to J1;�(V), it is then
easily established that for a �xed T and N !1, J1;�(V)!d N(0; !

2
1;�), where,

8

!21;� = 1 +
4 (� 0TMF�T )�
2 + �
2;"qT

� "��0�
N

�
+
�
� 0TMF�T

��XT

t=1
c3t

� PN
i=1 �iE

�
"3it
�

N

!#
;

which for a �xed T tends to a �nite limit as N ! 1. Hence, J�(V) diverges under H1
at the rate of N�1=2�0V�1�. But, N�1=2�0V�1� �

�
N�1=2�0�

�
�min(V

�1), and since
under Assumption 3, 0 < �min(V�1) < K <1, then J� (V) test must have power against
alternatives

H1 :
XN

i=1
�2i = �

0� = O(N ��); (16)

so long as �� > 1=2.9 This speci�cation requires that �i is non-zero for a su¢ ciently large
number of securities. It does not require that �i to be non-zero for all securities under
consideration.

3.1 A J� test based on an adaptive thresholding estimator of V

To make the J� test operational a suitable estimator of V is required. But as was noted
in the Introduction this is possible only if we are prepared to impose some restrictions on
the structure of V. In the case of CAPM regressions where the errors are at most weakly
cross-sectionally correlated, this can be achieved by adaptive thresholding which sets to
zero elements of V that are su¢ ciently small, or by use of shrinkage type estimators that
put a substantial amount of weight on the diagonal elements of the shrinkage estimator of
V. In their recent paper, Fan, Liao and Mincheva (2012) consider consistent estimation of
V in the context of an approximate factor model, identical to the one considered in this
paper. They assume V is sparse and propose an adaptive thresholding estimator, �V, which
they show to be positive de�nite with satisfactory small sample properties. In particular,
they assume that the rows of V have only a �nite number of non-zero elements which is in
line with our requirement that the maximum absolute row sum norm of V is bounded in
N . Fan, Liao and Mincheva show that



�V�1 �V�1

 = Op (m+ 1)rr ln(N)
T

!
; (17)

8This result can be obtained using (53) with A = IN in Appendix A.
9 In view of this result, the null hypothesis of Theorem 1 can be written more generally as H0 :

PN
i=1 �

2
i =

O(N��), for �� < 1=2.
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wherem is the number of factors, and r is the maximum number of non-zero elements in the
rows of V. Using �V�1 we have the following operational version of the J� test (assuming
�
2;" is known)

J�(�V) =
(� 0TMF�T ) �̂

0 �V�1�̂�N�
1 + 1

2�
2;"qT
�1=2p

2N
= J� +

(� 0TMF�T ) �̂
0 ��V�1 �V�1� �̂�

1 + 1
2�
2;"qT

�1=2p
2N

;

and J�(�V)!d N(0; 1), if (recalling that �
2;"qT = Op(T
�1))




(� 0TMF�T ) �̂

0 ��V�1 �V�1� �̂
p
N






!p 0.

But 




(� 0TMF�T ) �̂
0 ��V�1 �V�1� �̂
p
N






 < 1p
N

�
� 0TMF�T

�
k�̂k2



�V�1 �V�1

 ;
and under � = 0 (and in view of (5))

k�̂k2 = �̂0�̂ =
�XT

t=1
utct

�0�XT

t=1
utct

�
= Tr(V)Op

�XT

t=1
c2t

�
:

Using this result together with (17), and recalling that
�PT

t=1 c
2
t

�
(� 0TMF�T ) = 1, and

Tr(V) =O(N), we now have




(� 0TMF�T ) �̂
0 ��V�1 �V�1� �̂
p
N






 < Op
 
(m+ 1)r

r
N ln(N)

T

!
:

Therefore, J�(�V) !d N(0; 1), if N ln(N)=T ! 0. However, this is not good enough
since our objective is to construct tests that are valid when N > T , whilst the condition
N ln(N)=T ! 0 requires just the reverse. It is not clear to us if the use of other available
estimators ofV can overcome the curse of testing � = 0, when N > T . Instead, we consider
other formulations of the J� test that do not require an estimate of V�1.

3.2 A J� test based on the diagonal elements of V

In view of the above results and considering that in an approximate factor model we would
expect the o¤-diagonal elements of V to become relatively less important as N ! 1,
in what follows we consider J� type tests that are based on an N � N diagonal matrix,
D = diag(�21; �

2
2; :::; �

2
N ) with �

2
i = E

�
u2it
�
, rather than the full covariance matrix.

Let Wd = (�
0
TMF�T ) �̂

0D�1�̂, and consider the standardized test statistic

J�(D) =
Wd � E(Wd)p
V ar(Wd)

:

Initially, assume that D is known and note that under � = 0,

Wd =
�
� 0TMF�T

��XT

t=1
utct

�0
D�1

�XT

t=1
utct

�
=

�
� 0TMF�T

��XT

t=1
Q"tct

�0
D�1

�XT

t=1
Q"tct

�
=

�
� 0TMF�T

��XT

t=1
ct"

0
t

�
Q0D�1Q

�XT

t=1
ct"t

�
= x0T

�
Q0D�1Q

�
xT :

10



Therefore, setting A = Q0D�1Q in equations (48) and (50) of Appendix A we have

J�(D) =
(� 0TMF�T ) �̂

0D�1�̂� Tr(A)r
2Tr(A2) +

�PN
i=1 a

2
ii
2;"i

�
qT

; (18)

where aii is the ith diagonal element of A, 
2;"i = E("
4
it) � 3, and qT is given by (13). It

is easily seen that Tr(A) = Tr(R) = N , and Tr(A2) = Tr(R2), where R = (�ij) is the
correlation matrix of the errors, ut.

To apply the Kelejian and Prucha�s Theorem 1 to J�(D) we note that under the null
hypothesis, � = 0,

J�(D) =
(x0TAxT �N)r

2Tr(A2) +
�PN

i=1 a
2
ii
2;"i

�
qT

;

where the elements of xT are distributed independently across i, have zero means, and
�nite fourth-order moments. Therefore, Assumption 1 of KP�s Theorem is satis�ed. Also,
Assumption 2 of KP is met since

Q0D�1Q




1
�


Q0



1



D�1


1
kQk1 � sup

i
(
1

�2i
) kQk1 kQk1 ;

which is bounded in N under our Assumption 3. Finally, KP require that N�1V ar(Wd) � c
for some c > 0. In the case of the present application

N�1V ar(Wd) = 2
�
N�1Tr(A2)

�
+

�
N�1

XN

i=1
a2ii
2;"i

�
qT ; (19)

where qT > 0. But
N�1Tr(A2) = N�1Tr(RR0) = N�1 kRk2F

and since R is a full rank matrix, the following inequality holds between its Frobenius and
spectral norms

kRk2 � kRk2F � N kRk
2 :

Hence

N�1Tr(A2) = N�1 kRk2F � kRk
2 =




D�1=2QQ0D�1=2



2 � kDk�21 kQk21 kQk

2
1 ;

which is bounded in N under Assumption 3. Furthermore,

Tr(R2) =
XN

i=1

XN

j=1
�2ij = N

h
1 + (N � 1)�2

i
; (20)

where
�2 =

2

N(N � 1)
PN
i=2

Pi�1
j=1 �

2
ij � 0: (21)

Therefore, since under Assumption 3 N�1Tr(R2) is bounded in N , it also follows that
(N � 1)�2 < K < 1. Furthermore, since N�1PN

i=1 a
2
ii � N�1Tr(A2) = N�1Tr(R2) =

1 + (N � 1)�2, we have����N�1
XN

i=1
a2ii
2;"i

���� < N�1
XN

i=1
a2ii
��
2;"i�� < sup

i
(
��
2;"i��)N�1

XN

i=1
a2ii < sup

i
(
��
2;"i��) h1 + (N � 1)�2

i
:

Using the above results in (19), it follows that N�1V ar(Wd) is bounded in N; and we have
limN!1N

�1V ar(Wd) � c > 0; as required by KP�s Theorem 1 if �
2;" > 0.
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Theorem 2 Consider the CAPM regressions, (1), suppose Assumptions 1, 2a, and 3 hold,
and V is known. Then under H0 : �i = 0 for all i; and as N !1 for any T > m+ 1

J�(D) =
N�1=2 �(� 0TMF�T ) �̂

0D�1�̂�N
�r

2N�1Tr(R2) +
�
N�1PN

i=1 a
2
ii
2;"i

�
qT

!d N(0; 1), (22)

where V = D�1=2RD�1=2, and as in Theorem 1 �̂ = (�̂1; �̂2; :::; �̂N )0, �̂i is the OLS esti-
mator of �i in (1), �
2;" = E(
2;"i) > 0, 
2;"i = E("

4
it)� 3, "t = Q�1ut, and qT = Op(T�1)

is de�ned by (13).

Some of the conditions of the above theorem can be relaxed, but it serves our purpose
of showing that an asymptotically valid test of � = 0 can be constructed in the large N
case without needing to make use of the inverse of V, so long as the cross correlation of the
errors is not too strong, namely if (N � 1)�2 is bounded in N . But, this latter condition
holds for a wide class of cross-sectionally weakly correlated errors.10 To see this suppose
that the errors have the following multi-factor structure

uit = '
0
iht + !i"it;

where ht is the r � 1 vector of unobserved common factors, 'i is the associated r � 1
vector of factor loadings, "it s iid(0; 1) are the purely idiosyncratic components of uit,
and r is assumed to be �xed. To ensure that uit are serially uncorrelated with mean zero
and variance �2i , without loss of generality, we further assume that ht s IID(0; Ir), and
note that �2i = '0i'i + !

2
i : The degree of cross-sectional dependence is measured by �b

de�ned by (see Chudik, Pesaran and Tosetti, 2011, and Bailey, Kapetanious and Pesaran,
2012)

PN
i=1 b

0
ibi = O(N �b), where bi = 'i=�i. The parameter �b is referred to as the

exponent of cross-sectional dependence. In the standard factor literature it is assumed that
�b = 1, which corresponds to the case of strong cross-sectional dependence. It is now easily
established that in fact limN!1(N � 1)�2 = 0 for all values of �b < 1=2, and we have the
following general theorem which sets out empirically veri�able assumptions and conditions
under which the J�(D) test is applicable. In the borderline case of �b = 1=2, (N � 1)�2
tends to a �nite non-zero limit and in implementation of J�(D) test knowledge of �2 is
required. See Section 4.3.

Theorem 3 Consider the CAPM regressions, (1), suppose Assumptions 1, 2a and 3 hold,
E(u2it) = �

2
i , i = 1; 2; :::; N are known, the errors, uit, follow the multi-factor model

uit = '
0
iht + !i"it; (23)

where "it s iid(0; 1); ht is the r � 1 vector of unobserved factors distributed as ht s
IID(0; Ir), 'i is the r � 1 vector of factor loadings, r is �xed, �2i = '0i'i + !

2
i < 1, for

all i, and
NX
i=1

b0ibi = O(N
�b), for some �b < 1=2, (24)

where bi = 'i=�i. Further assume that 
2;"i and aii are independently distributed, where

2;"i = E("4it) � 3, and aii is the ith diagonal element of A = Q0D�1Q . Then under
H0 : �i = 0 for all i; and for any T > m+ 1, as N !1

J�(D) =
N�1=2 �(� 0TMF�T ) �̂

0D�1�̂�N
�p

2 + �
2;"qT
!d N(0; 1), (25)

10 In cases where the errors of CAPM model are not weakly corrected but (semi-)strongly correlated, it
can be argued that important factors are missing from the CAPM regressions.
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where �̂ = (�̂1; �̂2; :::; �̂N )0, �̂i is the OLS estimator of �i in (1), �
2;" = E(
2;"i), 
2;"i =
E("4it)�3, "t = Q�1ut, and qT = Op(T�1) is de�ned by (13). When �b = 1=2, limN!1(N�
1)�2 exists but does not vanish, and the term (N�1)�2 must be included in the denominator
of J�(D), as in (22). The J�(D) test has power for a �xed T > m+1, against alternatives
H1 de�ned by (16), with �� > 1=2.

A proof is provided in Appendix B.
Consider now the asymptotic power of J�(D) test. Using the results in Appendix A

it is easily seen that power function of J�(D) test diverges at the rate of N�1=2�0D�1�,
and as with the J�(V) test, it has power against alternatives de�ned by (16) for all values
of the cross-sectional exponent, �� > 1=2. But, not surprisingly, J�(V) test that makes
use of the o¤-diagonal elements of the error covariance matrix will exhibit higher power,
although the di¤erential in the power function of the two tests is likely to diminish as
N !1, under the assumption that the errors, uit, are cross-sectionally weakly correlated
(with �b < 1=2). The relative e¢ ciency of the J�(V) test over the J�(D) test depends on
the size of �max(R). The higher �max(R), the higher will be the power superiority of J�(V)
over the J�(D) test. But, this gain in power is unlikely to be attainable in practice where
a su¢ ciently accurate estimate of V�1 can not be obtained, as argued in Section 3.1.

The use of J�(D) is also complicated by the fact that error variances �2i , and �
2;" must
be replaced by their estimators. In what follows we focus on alternative operational versions
of the J�(D) test.

4 Two Operational Versions of the J� Test

In view of the above theoretical results we focus on the J� test, by considering the following
estimate of Wd

Ŵd =
�
� 0TMF�T

�
�̂0D̂�1

v �̂ =

�
� 0TMF�T
v�1T

� NX
i=1

�
�̂2i
�̂2i

�
;

where D̂v =
�
v�1T

�
diag(�̂21; �̂

2
2; :::; �̂

2
N ), �̂

2
i = û0i:ûi:=T , and the degrees of freedom v =

T �m� 1 is introduced to correct for small sample bias of the test. It is then easily seen
that

Ŵd =

NX
i=1

t2i ; (26)

where ti denotes the standard t-ratio of �i in the OLS regression of yit on an intercept and
ft; namely

t2i =
�̂2i (�

0
TMF�T )

v�1T �̂2i
: (27)

As with the J�(D) test statistic, which is de�ned by (18), a standardized version of Ŵd

can now be considered

Ĵ� =
Ŵd � E

�
Ŵd

�
r
V ar

�
Ŵd

� : (28)

We examine the properties of Ĵ� under each of the four combinations of assumptions
regarding the distribution of the errors and the strength of their cross-sectional correla-
tions: (i) Gaussian cross-sectionally uncorrelated errors, (ii) (possibly) non-Gaussian and
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cross-sectionally independent errors, (iii) Gaussian and (possibly) cross-sectionally corre-
lated errors, (iv) non-Gaussian (possibly) and cross-sectionally correlated (possibly) errors.
Firstly, we introduce a test, which we denote by Ĵ�;1 under Gaussian cross-sectionally un-
correlated errors, which turns out to be robust to non-Gaussianity or weak cross-sectional
error correlation, such that �b < 1=2 (de�ned by (24)). Then, we introduce another variant,
called Ĵ�;2 test, which is expected to be robust even to moderately strong degrees of error
cross-sectional correlations, namely when �b is close to or even slightly above 1=2.

4.1 Gaussian and cross-sectionally uncorrelated errors

We begin with the basic case where the errors are Gaussian and uncorrelated, and then
consider di¤erent ways that these assumptions could be relaxed. In this case where the
errors, uit, are normally distributed the individual ti statistics are distributed as Student t
with v degrees of freedom, and we have (assuming v = T �m� 1 > 4)

E(t2i ) =
v

v � 2 , E(t
4
i ) =

3v2

(v � 2)(v � 4)

V ar(t2i ) = E(t4i )�
�

v

v � 2

�2
=

�
v

v � 2

�2 2(v � 1)
v � 4 :

Therefore,

E
�
Ŵd

�
=

NX
i=1

E
�
t2i
�
=

vN

v � 2 ;

and since the errors are cross-sectionally uncorrelated

V ar
�
Ŵd

�
=
2N(v � 1)
(v � 4)

�
v

v � 2

�2
:

Thus we have the following exactly standardized test statistic

Ĵ�;1 =
N�1=2PN

i=1

�
t2i � v

v�2

�
�

v
v�2

�q
2(v�1)
(v�4)

; (29)

which is distributed as N(0; 1) under the H0 : �i = 0, for all i, as N ! 1, for any
T > m+ 5. The proof follows by application of the Lindeberg�Lévy central limit theorem

directly to N�1=2PN
i=1

�
t2i � v

v�2

�
, noting that t2i has a �nite second order moment since

by assumption v = T �m� 1 > 4.

4.2 Non-Gaussian and cross-sectionally independent errors

Maintaining the error independence assumption, suppose now that the errors uit are non-
Gaussian with 
1;i = E(u

3
it)=�

3
i and 
2;i = [E(u

4
it)�3]=�4i .11 Note that under non-Gaussian

errors, ti is no longer Student t distributed and E(t2i ) and V (t
2
i ) need not be the same

across i, due to the heterogeneity of 
1;i and 
2;i over i. In order to deal with these
problems, we need to slightly strengthen Assumptions 1 and 2a, by further assuming that:
(i) f 0tft � K < 1 for all t, and; (ii) E(j"itj8+�) < K < 1 for some � > 0. Assumption (i)

ensures that each element ofMF�T is bounded in absolute value. Assumption (ii) enables
us to obtain higher order approximations for the mean and variance of t2i .

11Observe that under the error independence assumption, 
2;i = 
2;"i.
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Using a slightly extended version of Laplace approximation of moments of ratio of
quadratic forms by Lieberman (1994), we can obtain E(t2i ) and V ar(t

2
i ) up to O(v

�3=2),
given F (see Proposition 16 proved in Appendix D):

E
�
t2i
�
=

v

v � 2 + 
2;i
S0v

v3=2
+
W0;iv

v2
(30)

V ar
�
t2i
�
=

�
v

v � 2

�2 2 (v � 1)
(v � 4) +


21;iS1v + 
2;iS2v

v
+

21;iS3v + 
2;iS4v

v3=2
+
W1;iv

v2
(31)

where

S0v =
v1=2Tr (PG �HF )

� 0TMF�T
;

S1v = �
8 [� 0T (IT �HF )HF (IT �MG) �T ]�

� 0TMF�T
�2 , S2v = vqT � 3;

S3v = �
v1=212 [� 0T (IT �HF )MG (IT �HF ) �T ]�

� 0TMF�T
�2 , S4v = �

v1=210Tr (PG �HF )

� 0TMF�T
;

� represents the Hadamard (or element-wise) product matrix operator,HF =MF�T�
0
TMF ,

MG = IT � PG; PG = G (G0G)�1G0 with G =(F; �T ), Sjv; j = 0; 1; 2; 3; 4, W0;iv and
W1;iv are O(1) functions of F, v and 
`;i, ` = 1; 2; :::; 6, which are at most O(1), are given
by 
1;i = E(�

3
it), 
2;i = E(�

4
it)�3; 
3;i = E(�5it)�10
1;i, 
4;i = E(�6it)�10
21;i�15
2;i�15,


5;i = E
�
�7it
�
� 21
3;i � 35
2;i
1;i � 105
1;i, 
6;i = E

�
�8it
�
� 28
4;i � 56
3;i
1;i � 35
22;i �

210
2;i � 280
21;i � 105; where �it = uit=�i. These results can now be used to establish the
following theorem:

Theorem 4 Consider the regression model (1), and suppose that Assumptions 1, 2a and
3 hold. Further assume that: (i) f 0tft � K <1 for all t, and; (ii) E(j"itj8+�) < K <1 for
some � > 0. Consider the statistic, Ĵ�;1; de�ned by (29). Then, under H0 : �i = 0 for all
i; Ĵ�;1 !d N(0; 1), if N=T 3 ! 0, as N !1 and T !1, jointly.

Proof. Consider Ĵ� de�ned by (28), and note that under Assumption 1 it can be written
as

Ĵ� =
N�1=2PN

i=1

�
t2i � E(t2i )

�q
N�1PN

i=1 V ar(t
2
i )

:

Substituting for E(t2i ) and V ar(t
2
i ) from (30) and (31), respectively, we have

Ĵ� =
N�1=2PN

i=1

�
t2i � v

v�2

�
+N1=2�
2

S0v
v3=2

+N1=2 �W0v
v2r�

v
v�2

�2
2(v�1)
(v�4) +


21 S1v+�
2S2v
v +

�
21S3v+�
2S4v
v3=2

+
�W1v
v2

;

where 
21 = N�1PN
i=1 


2
1;i, �
2 = N�1PN

i=1 
2;i, �W0v = N�1PN
i=1W0;iv, and �W1v =

N�1PN
i=1W1;iv. Under our assumptions, 
21 and �
2, being averages of bounded sequences,

are O(1), and as established in Appendix D, �W0v and �W1v are also Op(1). It is now easily

seen Ĵ� = Ĵ�;1 + Op

�p
N
v3

�
+ Op

�
1
v

�
, where Ĵ�;1 is de�ned by (29). However, under As-

sumptions 1, 2a and 3, Ĵ� !d N(0; 1), as N !1 with T > m+ 5. Hence, by Lemma 4.7
in White (2001, p.67), Ĵ�;1 !d N(0; 1) if

p
N=T 3 ! 0, as N and T !1, as required.
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Therefore, under non-Gaussian errors, the use of the Ĵ�;1 test is asymptotically justi�ed
even when N is much larger than T , when T is not too small. Monte Carlo results, to be
reported below, suggest that the test works well even if T = 60 and N = 500.

One could be tempted to adjust the Ĵ� test statistic by including the higher order terms
given by (30) and (31). However, sample estimates of 
21;i and 
2;i needed to implement
such second order corrections are themselves subject to estimation uncertainty and their
use need not result in improvements over the Ĵ�;1 test.

4.3 Gaussian and cross-sectionally correlated errors

To consider the case under cross-sectionally correlated errors, we assume that the correla-
tion matrix R is sparse.12 In terms of Assumption 3, it is su¢ cient to require that Q is
sparse in addition to its inverse having bounded absolute maximum column and row sum
matrix norms.

Suppose now that the errors are Gaussian but the errors are weakly cross-sectionally
correlated such that �b < 1=2. In this case the numerator of Ĵ�;1 is still valid, but an exact

expression for V ar
�
Ŵd

�
now depends on the average of pair-wise correlation coe¢ cients

of t2i and t
2
j , speci�cally

V ar
�
Ŵd

�
=
2N(v � 1)
(v � 4)

�
v

v � 2

�2 "
1 +

2

N

NP
i=2

i�1P
j=1

Corr(t2i ; t
2
j )

#
; (32)

where Corr(t2i ; t
2
j ) = Cov(t2i ; t

2
j )=
h
V ar(t2i )V ar(t

2
j )
i1=2

. The relevant J� statistic for this

case is given by

Ĵ�;1 =
N�1=2PN

i=1

�
t2i � v

v�2

�
(
2N(v�1)
(v�4)

�
v
v�2

�2 "
1 + 2

N

NP
i=2

i�1P
j=1

Corr(t2i ; t
2
j )

#)1=2 : (33)

However, as shown in Appendix E, under Gaussianity and R being sparse, for all i 6= j we
have

Corr
�
t2i ; t

2
j

�
=

�
�2ij +O(v

�1=2); for �ij 6= 0;
0; for �ij = 0;

where �ij = E(uitujt)=
q
E(u2it)E(u

2
jt) is the correlation coe¢ cient of the errors, uit and

ujt. Therefore, considering that by assumption R is sparse, then the maximum number of
elements in each row of R must be bounded and we have

2

N

NP
i=2

i�1P
j=1

Corr(t2i ; t
2
j ) = (N � 1)�2 +O

�
v�1=2

�
; (34)

where �2 is de�ned by (21). Hence, the J� statistic in the present case can be written as

J� =
N�1=2PN

i=1

�
t2i � v

v�2

�
r
V ar

�
Ŵd

� =
N�1=2PN

i=1

�
t2i � v

v�2

�
r�

v
v�2

�2
2(v�1)
(v�4)

h
1 + (N � 1)�2 +O

�
v�1=2

�i : (35)

12Matrix R = (�ij) is said to be sparse if the maximum number of non-zero elements in its rows (columns)
is bounded in N , namely if

PN
j=1 I

�
�ij 6= 0

�
� K <1, for all i, where I (A) is an indicator function that

takes the value of unity if A is true and zero otherwise.
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The derivation of the asymptotic distribution of J� is complicated by the fact that under
error cross-sectional dependence the t2i statistics are not independently distributed. But
from Theorem 3 under Gaussian errors and when �b < 1=2 (de�ned by (23) and (24)), we
know that

J�(D) =
N�1=2 �(� 0TMF�T ) �̂

0D�1�̂�N
�

p
2

!d N(0; 1): (36)

Also, when �b < 1=2; then (N � 1)�2 ! 0, as N !1, and

V ar
�
Ŵd

�
=

�
v

v � 2

�2 2 (v � 1)
(v � 4)

h
1 + (N � 1)�2 +O

�
v�1=2

�i
! 2, as N and T !1, in any order.

Hence, to establish the asymptotic normality of J� it is su¢ cient to prove that ZNT de�ned
by

ZNT = N
�1=2

NX
i=1

�
t2i �

v

v � 2

�
�N�1=2 ��� 0TMF�T

�
�̂0D�1�̂�N

�
; (37)

also tends to 0 as N and T !1. This result is established in Appendix F. The following
corollary summarizes this �nding:

Corollary 5 Consider the regression model (1), and suppose that Assumptions 1, 2, and
3 hold, and Q de�ned in Assumption 3 is sparse. In addition, suppose that the errors, uit,
are su¢ ciently weakly correlated, such that �b < 1=2, so that (N � 1)�2 ! 0, as N ! 1.
Then, under H0 : �i = 0 for all i; Ĵ�;1 !d N(0; 1), as N and T ! 1; jointly, where Ĵ�;1
is de�ned by (29).

Now consider the slightly stronger case of error cross-sectional dependence where �b �
1=2. In this case, (N � 1)�2 does not necessarily tend to zero but is merely bounded,
as N ! 1, thus, the Ĵ�1 test should be modi�ed such that (N � 1)�2 is replaced by a
consistent estimator. Therefore, in order to accommodate the case �b = 1=2 and also to
improve the small sample performance of the test, particularly in cases where �b is very

close to 1=2, we propose to estimate 2
N

PN
i=2

Pi�1
j=1Corr(t

2
i ; t

2
j ) by (N � 1) b�2, where

b
�2 =

2

N(N � 1)
PN
i=2

Pi�1
j=1 �̂

2
ijI
�
v�̂2ij � �N

�
; (38)

�̂ij = û
0
i:ûj:=

r
(û0i:ûi:)

�
û0j:ûj:

�
, and I (A) is an indicator function which returns unity if A

is true and zero otherwise. The threshold value �N is chosen such that Pr(�ij 6= 0) decline
steadily with N . This is because in the case of weakly correlated errors with R being
sparse, there are only a �nite number of non-zero elements per each row of matrix R as
N !1. Under the null hypothesis that errors are cross-sectionally independent, for each
i, the N � 1 separate tests of �ij = 0; for j = 1; 2; :::; N , j 6= i, are also independent, and
the size of the individual N � 1 tests is given by pN = 1� (1� p)1=(N�1), or approximately
pN = p=(N�1), where p is the overall size of the test.13 Now noting that under �ij = 0; and
for T su¢ ciently large v�̂2ij � �21, we obtain

p
�N = �

�1 �1� pN
2

�
, where ��1(:) represents

the inverse of the cumulative distribution function of the standard normal variate. The
13The approximate formula also admits dependence across tests using Bonferroni�s formula. We set

p = 10% in the Monte Carlo experiments and the empirical analysis that follow.
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test statistic for this case can then be written as

Ĵ�;2 =
N�1=2PN

i=1

�
t2i � v

v�2

�
�

v
v�2

�s
2(v�1)
(v�4)

�
1 + (N � 1) b�2� ; (39)

with b�2 de�ned by (38).
By using a similar discussion for Corollary 5, from Theorem 2 under Gaussian errors

and �b � 1=2, we know that

J�(D) =
N�1=2 �(� 0TMF�T ) �̂

0D�1�̂�N
�r

2
h
1 + (N � 1)�2

i !d N(0; 1): (40)

Since it is shown that ZNT !p 0 as N and T !1 in any order when �b � 1=2 withR being
sparse in Appendix F, to establish conditions that J�(D)�Ĵ�;2 is asymptotically negligible,
it is enough to verify conditions under which plimN;T!1(N � 1) b�2 = limN!1 (N � 1) �2.
In Appendix G we show that (N � 1) �2 is consistently estimated by (N � 1) b�2, if R is
sparse and ln(N)=

p
T ! 0, as N and T ! 1. In terms of the factor speci�cation in

Theorem 3, Ĵ�;2 test continues to be valid even if �b � 1=2, which allows for a higher degree
of error cross-sectional dependence as compared to �b < 1=2 assumed in Theorem 3.

The following corollary covers the case where limN!1 (N � 1) �2 is �nite but possibly
non-zero:

Corollary 6 Consider the regression model (1), and suppose that Assumptions 1, 2, and
3 hold, and Q de�ned in Assumption 3 is sparse. Then under H0 : �i = 0 for all i;
Ĵ�;2 !d N(0; 1), as N and T ! 1; such that ln(N)=

p
T ! 0, where Ĵ�;2 is de�ned by

(39).

In practice where the extent of error cross-correlations is unknown, Ĵ�;2 is preferred to
Ĵ�;1. Small sample evidence in favour of this observation is provided in the Monte Carlo
section.

4.4 Non-Gaussian and cross-sectionally correlated errors

When �b < 1=2, combining the results of Theorem 4 and Corollary 5, then Ĵ�;1 continues
to be asymptotically N(0; 1) so long as N=T 3 ! 0, as N ! 1 and T ! 1, jointly, if it
is further assumed that (i) f 0tft � K < 1 for all t, and (ii) E(j"itj8+�) < K < 1 for some
� > 0. When �b � 1=2, combining the results obtained in sub-sections 4.2 and 4.3, Ĵ�;2
is asymptotically a valid test so long as N=T 3 ! 0 and ln(N)=

p
T ! 0, as N ! 1 and

T !1, jointly.

5 Monte Carlo Experiments

We examine the �nite sample properties of the Ĵ� tests (namely Ĵ�;1, and Ĵ�;2) by Monte
Carlo experiments, and compare their performance to existing tests whenever possible. For
comparison, we consider the GRS test as well as two distribution-free sign tests of �i = 0,
proposed by Gungor and Luger (2009). These tests, referred to as SS and WS tests,
allow the error distribution to be non-normal but require it to be conditionally symmetric
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around zero.14 These tests are relatively easy to compute and are applicable even when
N > T . However, they are constructed for models with a single factor and their validity is
established only under N < T .

The SS test is based on the sign statistic

SSN =
XN

i=1
S2i ; (41)

where

Si =

hPT
t=1 I (zit > 0)

i
� T =2p

T =4
;

I (A) is the indicator function as de�ned by (38),

zit =

�
yi;t+T
ft+T

� yit
ft

��
ft � ft+T
ftft+T

�
, t = 1; 2; :::; T ;

T is the nearest integer part of T=2. The WS test is based on the Wilcoxon signed rank
statistic

WSN =
XN

i=1
W 2
i ; (42)

where

Wi =

hPT
t=1 I (zit > 0)Rank(jzitj)

i
� T (T + 1) =4p

T (T + 1) (2T + 1) =24
;

Rank(jzitj) is the rank (natural number) of jzitj when jzi1j; jzi2j; :::; jziT j are placed in an
ascending order of magnitude. Gungor and Luger (2009) show that under the null hypoth-
esis, �i = 0 for all i, both Si and Wi statistics have limiting (as T ! 1) standard normal
distributions. Under the additional assumption that the errors in the CAPM regressions are
cross-sectionally independent, conditional on the values of the single factor (f1; f2; :::; fT ),
SSN and WSN follow �2N distributions.

15

5.1 Monte Carlo designs and experiments

We consider the following data generating process (DGP)

rit = �i +
mX
`=1

�`if`t + uit; i = 1; 2; ::; N ; t = 1; 2; :::; T , (43)

and calibrate its parameters to closely match the main features of the time series observa-
tions on individual returns and the three Fama-French factors (market factor, HML and
SMB) used in the literature on tests of market e¢ ciency.16 The Monte Carlo (MC) de-
sign is also intended to match the models used for the empirical applications that follow.
Accordingly, we set m = 3 and generate the factors as

f`t = 0:53 + 0:06f`;t�1 +
p
h`t �`t; for ` = 1;Market factor;

f`t = 0:19 + 0:19f`;t�1 +
p
h`t �`t; for ` = 2;HML;

f`t = 0:19 + 0:05f`;t�1 +
p
h`t �`t; for ` = 3; SMB;

14See equation (13) in Gungor and Luger (2009) for the de�nition of SS and WS test statistics.
15Gungor and Luger (2011) extend their approach to accommodate multiple factors, but will not be

considered here since even in the case of single factor models Gungor and Luger�s proposed tests su¤er from
serious size distortions in the presence of non-normal errors and/or cross-correlated errors, as documented
below.
16See Fama and French (1993). SMB stands for "small market capitalization minus big" and HML for

"high book-to-market ratio minus low". See Subsection 6.1 and Appendix C for further details and data
sources.
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where �`t � IIDN(0; 1) and17

h`t = 0:89 + 0:85h`;t�1 + 0:11�
2
`;t�1, for ` = 1; Market

h`t = 0:62 + 0:74h`;t�1 + 0:19�
2
`;t�1, for ` = 2;HML

h`t = 0:80 + 0:76h`;t�1 + 0:15�
2
`;t�1, for ` = 3; SMB.

The above processes are generated over the period t = �49;�48; ::::0; 1; 2; ::::; T with
f`;�50 = 0 and h`;�50 = 1 for ` = 1; 2; 3. Observations t = 1; 2; :::; T are used in the
MC experiments.

To capture the main features of the individual asset returns and their cross correla-
tions, we generate the idiosyncratic errors, ut = (u1t; u2t; :::; uNt)0, according to ut = Q"t,
where "t = ("1t; "2t; :::; "Nt)

0, and Q = D1=2P with D = diag(�21; �
2
2; :::; �

2
N )

0 and P being a
Cholesky factor of correlation matrix of ut, R, which is an N �N matrix used to calibrate
the cross correlation of returns. For each i, "it is generated such that uit exhibits skewness
and kurtosis which is typical of individual security returns.

To this end, motivated by the error factor structure discussed in Subsection 3.2, we
generate R as

R = IN + bb
0 � �B2; (44)

where b = (b1; b2; ::::; bN )0 and �B = diag(b). The choice of R is also related to the single
error factor model, uit = 'iht + !i"it, with ht s iidN(0; 1); and "it s iidN(0; 1), where
V ar(u2it) = �2i = '2i + !

2
i , and letting bi = 'i=�i, then the correlation matrix of ut =

(u1t; u2t; ::::; uNt)
0 can be written as (44). To generate di¤erent degrees of cross-sectional

dependence, we draw the �rst and the last Nb (< N) elements of b as Uniform(0:7; 0:9),
and set the remaining middle elements to 0. We set Nb = bN �bc; where bAc is the largest
integer part of A, and consider the exponents �b = 0:25; 0:50, and 0:60. The case of no
error cross-sectional dependence is obtained when Nb = 0, and the error cross-sectional
dependence is weak when �b � 0:5. The case of �b = 0:60 is included to see how the two
operational versions of the J� test (namely Ĵ�;1 and Ĵ�;2) perform when cross-sectional
error correlations are higher than the threshold value of 0:50 allowed by the theory. As
discussed earlier, the J� test is asymptotically valid when N�1Tr(R2) = O(1), and this
condition is satis�ed for �b � 1=2, but not for �b > 1=2.

To calibrate the variance, skewness and kurtosis of the simulated returns, we used
estimated values of these measures based on residuals of Fama-French regressions for each
security over the estimation windows � = 1989M9; 1989M10; :::; 2011M9, using sample of
sizes of T = 60 months. Speci�cally, for each i = 1; 2; :::; N� we run the Fama-French
regressions ri;�t � rf;�t = �̂i� + �̂1;i� (rm;�t � rf;�t) + �̂2;i�SMBt� + �̂3iHMLt� + ûi;�t, t =
1; 2; :::; 60; at the end of each month � = 1989M9 to 2011M9, and computed �̂2i;� = m̂2;i� ,


̂1;i;� = m̂3;i�=m̂
3=2
2;i� and 
̂2;i� = m̂4;i�=m̂

2
2;i� � 3 with m̂s;i� = (60)�1

P60
t=1

�
ûi;�t � ûi;�

�s
,

and ûi;� = (60)�1
P60
t=1 ûi;�t: We ended up with 126,181 di¤erent values of �̂

2
i;� , 
̂1;i;�

and 
̂2;i;� estimated for around 476 securities over 265 di¤erent estimation windows. We
discarded estimates that lied below the 2.5% and above the 97.5% quantiles to avoid the
calibrated values being dominated by extreme outliers. The same procedure was applied
to the estimated factor loadings, �̂`i:� .

The means and medians of �̂2i;� , 
̂1;i;� , 
̂2;i;� and �̂`i;� for ` = 1; 2; 3; and their 2:5% and
97:5% quantiles are summarized in Table 1. As can be seen from these results there is a
considerable degree of heterogeneity in estimates of the factor loadings and in the measures

17The estimates used in the generation of the factors and their volatilities are computed using monthly
observations over the period 1973M4-2011M9.
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of deviations, skewness and kurtosis, across securities and sample periods. Accordingly, in
order to mimic as far as possible the main characteristics of observed security returns, for

each replication, r, we generate �2(r)i , 
(r)1;i , 

(r)
2;i ,

n
�
(r)
`;i , for ` = 1; 2; 3

o
, as random draws

from their respective empirical distributions. For example, to generate �2(r)i over r and i,
we �rst place the estimates �̂2i;� ; for i = 1; 2; :::; N� , and � = 1; 2; :::; 265, that lie in the
2:5% to 97:5% quantile range, into 10 bins and then randomly select a bin with probability
equal to the proportion of the estimates in each bin, and then draw randomly a value for
�
(2r)
i from the selected bin. This procedure is repeated over i = 1; 2; :::; N and replications
r = 1; 2; :::; R.

To generate non-normal correlated errors, u(r)it , with given skewness and kurtosis, we
use the following procedure ( see Appendix H for full details). For each replication, r,

1. We generate N random draws �2(r)i , 
(r)1;i and 

(r)
2;i , i = 1; 2; :::; N; as described above,

and set
m
(r)
3;i = �

3(r)
i 


(r)
1;i ; and m

(r)
4;i = �

4(r)
i

�


(r)
2;i + 3

�
:

2. We set m(r)
";1 = 0 and m

(r)
";2 = 1, and derive m

(r)
";3;i and m

(r)
";4;i as

m
(r)
";3 = Q

(r)�1
(3) m

(r)
3 ; �

(r)
" = Q

(r)�1
(4) �(r);

where ,m(r)
";3 = (m

(r)
";3;1;m

(r)
";3;2; ::::;m

(r)
";3;N ),Q

(r)
(3) = Q

(r)�Q(r)�Q(r),m(r)
3 = (m

(r)
3;1;m

(r)
3;2; ::::;m

(r)
3;N )

0,

�
(r)
" = (�

(r)
"1 ; �

(r)
"2 ; :::; �

(r)
"N )

0,Q(r)(4) = Q
(r)�Q(r)�Q(r)�Q(r), and �(r) = (�(r)1 ; �

(r)
2 ; :::; �

(r)
N )

0

with �(r)"i = m
(r)
";4;i � 3 and �

(r)
i = m

(r)
4;i � 3�

4(r)
i , Q(r)= D(r)1=2P

(r)
, with D(r) =

diag(�
2(r)
1 ; �

2(r)
2 ; :::; �

2(r)
i )0 and P(r) being a Cholesky factor of correlation matrix

R(r) which is generated as described above (see (44). The operator � denotes the
Hadamard or element-wise multiplication.

3. Following Fleishman (1978), we then generate "it, t = 1; 2; :::; T as (suppressing the
superscript r for notational convenience)

"it = ai + bi�it + ci�
2
it + di�

3
it; i = 1; 2; :::; N;

where �it s IIDN(0; 1) and the coe¢ cients ai; bi; ci and di are determined so that
E("it) = 0; E("

2
it) = 1, E("

3
it) = m";3;i and E("4it)� 3 = �"i. This involves solving the

following system of equations for ai; bi; ci and di:

ai + ci = 0;

b2i + 6bidi + 2c
2
i + 15d

2
i = 1;

2ci(b
2
i + 24bidi + 105d

2
i + 2) = m";3;i;

24[bidi + c
2
i (1 + b

2
i + 28bidi) + d

2
i (12 + 48bidi + 141c

2
i + 225d

2
i )] = �"i:

4. Finally, we compute u(r)it =
PN
j=1 q

(r)
ij "

(r)
jt , where q

(r)
ij is the (i; j) element of Q(r); and

"
(r)
jt is the r

th draw from the above DGP.

To estimate size of the tests, we set �i = 0 for all i. To investigate power, we generated
�i as �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN ��c; �i = 0 for i = N� + 1; N� +
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2; :::; N . We considered the values �� = 0:8; 0:9; 1:0, but the power ended up to be very
high even for �� = 0:8. Therefore, we only report power estimates for �� = 0:80.

Having obtained a general calibrated design based on realized security return data, we
consider four sets of experiments in order to investigate the e¤ect of weak cross-sectional
correlation and non-normality of the errors upon the performance of the tests:

(i) Cross sectionally independent normal case: u(r)it = �
(r)
i "

(r)
it with "(r)it s IIDN(0; 1)

for all i and r.
(ii) Cross sectionally independent non-normal case: Use the procedure generating non-

normal errors u(r)it as speci�ed in steps 1-4 above, with Q(r) matrix replaced by D(r)1=2.

(iii) Cross sectionally correlated normal case: u(r)it =
PN
j=1 q

(r)
ij "

(r)
jt with "

(r)
it s IIDN(0; 1)

for all i and r.
(iv) Cross sectionally correlated non-normal case: u(r)it are generated following the steps

1-4 set out above.

All combinations of T = 60; 100 and N = 50; 100; 200; 500 are considered. All tests are
conducted at a 5% signi�cance level. Experiments are based on R = 2000 replications.

5.2 Test results

Table 2 reports the size and power of the SS and WS nonparametric tests of Gungor and
Luger (2009), GRS and Ĵ� tests in the case of models with one factor, under various degrees
of cross-sectional error correlations which are measured by the exponent, �b. Panel A shows
the results under normality, and Panel B gives the results under non-normal errors.

With cross-sectionally independent and Gaussian errors, the size of the SS and WS
tests is very close to the 5% nominal level for all combinations of N and T . The GRS
test, being an exact test, has the correct size (in cases where T > N). The empirical
size of Ĵ�;1 and Ĵ�;2 tests is also very close to the 5% nominal level for all combinations
of N and T . Even when N = 500, the size of Ĵ� tests lie in the range 5.0% to 5.3%
for di¤erent values of T . However, the power of the Ĵ� tests is substantially higher than
that of the GRS, SS and WS tests. For example, for T = 60 and N = 50 the power of
the GRS test is 22.1% as compared to 77.2% for the Ĵ�;2 test, although both tests have
similar sizes (5.3% for the GRS test and 6.1% for the Ĵ�;2 test). This is in line with our
discussion at the end of Section 2, and re�ects the fact that GRS assumes an arbitrary
degree of cross-sectional error correlations and thus relies on a large time dimension to
achieve a reasonably high power. In contrast, the power of the Ĵ� test is driven largely by
the cross-sectional dimension. This can be seen clearly from the tabulated results. Keeping
N �xed at 50, and increasing T from 60 to 100 results in the power of the GRS test to
rise from 22.1% to 77.2%, whilst the power of the Ĵ�;2 test (for example) rises from 77.2%
to 93.8%. It is interesting that even in this case (with T much larger than N) the Ĵ� test
still has substantially higher power than the GRS test, with comparable type I errors. The
power of Gungor-Luger tests is even smaller than that of the GRS test when N = 50. For
example, for N = 50 and T = 100 the power of the SS and WS tests are 34.7% and 43.0%,
respectively, as compared to 77.2% for the GRS test. Furthermore, whilst increasing N
improves the power of nonparametric tests, the increase is much less than what is achieved
by the Ĵ� tests. For example, keeping T �xed at 60 and increasing N from 50 to 200 raises
the power of the WS test from 23.0% to 43.7%, while the power of the Ĵ�;2 test rises from
77.2% to 97.8%. Perhaps this is not surprising considering that the nonparametric tests do
not make full use of the available observations.
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Consider now the case where the errors are normally distributed but cross-sectionally
dependent. Recall that the strength of error cross-sectional correlation is measured by the
exponent, �b. In line with our theoretical �ndings (see Section 2) for �b < 1=2, in particular
for �b = 1=4, the sizes of Ĵ�;1 and Ĵ�;2 tests are very close to the nominal value of 5%, for
all combinations of N and T . In particular, the size of the Ĵ�;2 test for N = 50 and T = 60
is 6.0%, and its power is 77.9% which substantially exceeds the power of the GRS test at
21.0% for the same combination of the sample sizes. Similar results are also obtained when
one considers the case where N = 50 and T = 100. Interestingly, the SS and WS tests
have also correct size. When �b = 1=2, the Ĵ�;1 test is no longer valid asymptotically, and
in line with this theoretical result, Ĵ�;1 test is now over-sized with its empirical size ranging
between 9.6% and 11.3%. In contrast, the Ĵ�;2 test seems quite robust to cross-sectional
error correlations, with its size falling in the range 5.4% to 6.9%. At this level of cross-
sectional error correlations, the nonparametric tests also exhibit some size distortions. The
sizes of SS andWS tests now lie in the range 7.0% to 8.5%, and 7.6% to 9.0%, respectively.
The size of the Ĵ�;2 test for N = 50 and T = 60 is 6.4%, and its power is 64.6%, which still
exceed the power of the GRS test which for this sample size combination is 30.0%. But,
as expected, increasing T from 60 to 100 results in the power of the GRS test to rise to
90.1%, which marginally beat the power of the Ĵ�;2 test at 88.9%. When �b = 3=5 > 1=2,
out of all the tests considered, only the GRS test is valid so long as N < T , and indeed
has the correct size in such cases. However, interestingly, the size of the Ĵ�;2 test is also
close to its nominal level (at 6.2%-7.2%) even for such a high value of �b. This seems to be

due to the inclusion of (N � 1) b�2 in the denominator of the Ĵ�;2 statistic, a term which is
absent from the denominator of the Ĵ�;1 statistic.

The e¤ects of non-normal errors on the tests are documented in Panel B of Table 2.
Consider �rst the case where the errors are non-normal but cross-sectionally uncorrelated.
The nonparametric tests exhibit a considerable size distortion, which is accentuated as T
or N rises. For example, when T = 60, increasing N from 60 to 500 results in the size of
the SS test to rise from 11:0% to 34:0%, and �xing N = 500 but increasing T from 60 to
100 causes the size of the SS test to rise from 11:0% to 64:6%. On the other hand, we see
that the size of the GRS test is hardly a¤ected by the types of departures from Gaussianity
observed in the CAPM residuals. The robustness of the GRS test to non-normal CAPM
errors of the type encountered in practice has also been documented by A­ eck-Graves and
McDonald (1989). As to be expected from the theoretical discussions, the Ĵ�;1 test and
the Ĵ�;2 test are reasonably robust to non-Gaussian errors, and exhibit only a very mild
tendency of over-rejecting the null hypothesis, even for relatively large N . For example,
whenT = 60, for N = 50, 100, 200, and 500, the sizes of the Ĵ�;2 test are 6:5%, 6:6%,
6:1%, and 6:6%, respectively. Furthermore, the Ĵ�;1 and Ĵ�;2 tests continue to maintain
their power superiority over the GRS test.

We now consider the empirically most relevant case where the errors are non-normal as
well as being cross-sectionally correlated. When �b = 1=4, there is no signi�cant di¤erence
in the results from those reported above for the cross-sectionally uncorrelated case. When
�b = 1=2, the size of the Ĵ�;1 test lies in the range 10.1%-11.8%, but the size of the Ĵ�;2 test
is reasonably controlled and lies in the range 5.5%-7.9%. The power comparisons discussed
for the cross-sectionally uncorrelated case also carry over to the present more general set
of experiments.

The Monte Carlo results for the Fama-French three-factor regressions are summarized
in Table 3, and give empirical sizes and powers of the GRS test and the two Ĵ� tests. The
SS and WS tests are only applicable to models with one factor and are therefore excluded
from Table 3. As can be seen, the results are qualitatively very similar to those obtained
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for the one factor model, and will not be discussed any further.

6 Empirical Application

6.1 Data description

We consider the application of our proposed Ĵ� tests to the securities in the Standard &
Poor 500 (S&P 500) index of large cap U.S. equities market. Since the index is primarily
intended as a leading indicator of U.S. equities, the composition of the index is monitored
by Standard and Poor to ensure the widest possible overall market representation while
reducing the index turnover to a minimum. Changes to the composition of the index
are governed by published guidelines. In particular, a security is included if its market
capitalization exceeds US$ 4 billion, is �nancially viable and at least 50% of their equity is
publicly �oated. Companies that substantially violate one or more of the criteria for index
inclusion, or are involved in merger, acquisition or signi�cant restructuring are replaced by
other companies.

In order to take account for the change to the composition of the index over time, we
compiled returns on all the 500 securities that constitute the S&P 500 index each month
over the period January 1984 to September 2011. The monthly return of security i for
month t is computed as rit = 100(Pit � Pi;t�1)=Pi;t�1 + DYit=12, where Pit is the end of
the month price of the security and DYit is the per cent per annum dividend yield on the
security. Note that index i depends on the month of which the security i is a constituent
of S&P500, � , say, which is suppressed for notational simplicity.

The time series data on the safe rate of return, and the market factors are obtained
from Ken French�s data library web page. The one-month US treasury bill rate is chosen
as the risk-free rate (rft), the value-weight return on all NYSE, AMEX, and NASDAQ
stocks (from CRSP) is used as a proxy for market return (rmt), the average return on
the three small portfolios minus the average return on the three big portfolios (SMBt),
and the average return on two value portfolios minus the average return on two growth
portfolio (HMLt). SMB and HML are based on the stocks listed on the NYSE, AMEX
and NASDAQ. All data are measured in percent per month. See Appendix C for further
details.

6.2 Month end test results (1989M9-2011M9)

Encouraged by the satisfactory performance of the J� tests, even in cases where N is much
larger than T , we apply the Ĵ�;2 test that allows for non-Gaussian and cross-correlated
errors to all securities in the S&P 500 index at the end of each month spanning the period
September 1989 to September 2011.18 In this way we minimize the possibility of survivor-
ship bias since the sample of securities considered at the end of each month is decided in
real time. As far as the choice of T is concerned we selected a relatively small sample period
of 60 months, primarily to reduce the impact of possible structural changes in �i�s, return
volatilities and correlations on the test outcomes. Accordingly, we estimated the CAPM
regressions

ri;�t � rf;�t = �̂i� + �̂i� (rm;�t � rf;�t) + ûi;�t; (45)

and the Fama-French (FF) three factor regressions,

ri;�t � rf;�t = �̂i� + �̂1;i� (rm;�t � rf;�t) + �̂2;i�SMBt� + �̂3iHMLt� + ûi;�t; (46)

18 In all the empirical applications T < N , and the GRS test can not be computed. We have also decided
to exclude the SS and WS tests discussed in the Monte Carlo Section on the grounds of their substantial
over-rejection of the null particularly in the presence of non-normal errors.
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for t = 1; 2; :::; 60, i = 1; 2; :::; N� , and the month ends, � = 1989M9; 1989M10; ::::; 2011M9.
All securities in the S&P 500 index are included except those with less than sixty months
of observations and/or with �ve consecutive zeros in the middle of sample periods.

Table 4 reports summary statistics for p-values of Ĵ�;2 test, cross-sectional averages of
measures of departure from non-normality and average pair-wise correlations of residuals
from CAPM and FF regressions of securities in the S&P 500 index using �ve year estimation
windows (sixty months) at the end of the months 1989M09 to 2011M09. The results con�rm
important departures from normality in the residuals. The extent of the departures are
particularly pronounced in the case of kurtosis measures where 
2 = 0 is rejected in 25%
of the samples under consideration. Three measures of average pair-wise correlations of
residuals are reported in the last columns of the table, which indicate minor degrees of
cross-sectional correlations. The residuals from FF regressions tend to be cross-sectionally
less correlated than those of CAPM regressions. The p-values range from 0 to 1, with a
mean and median of 0:59 and 0:74 for the CAPM model, and 0:52 and 0:58 for the FF
model, suggesting important time variations in the degree of market e¢ ciency.

Figure 1 provides plots of the evolution of p-values of Ĵ�;2 test based on CAPM and
FF regressions at the end of the months 1989M09 to 2011M09. The months at which
the null of market e¢ ciency is rejected at the 5% level based on both CAPM and FF re-
gressions are 1998M8, 1998M12-1999M2 and 2007M8-2009M3. The period around 1998M8
and 1998M12-1999M2 coincide with the Russian �nancial crisis (during August -September
1998) and the subsequent collapse of Long-Term Capital Management. The period 2007M8-
2009M3 matches the recent global �nancial crisis. In general, the Ĵ�;2 test tends to result
in rejection of the null of market e¢ ciency, in the Sharpe-Lintner sense, during periods of
major �nancial disruptions.

6.3 Long/short equity returns and p-values of Ĵ� test

The test results in Figure 1 clearly show important variations in the estimated p-values over
time, and it would be interesting to see if such variations in degrees of market e¢ ciency (as
measured by p-values of the Ĵa;2 test) are related to the performance of trading strategies.
There are many trading strategies that are designed to exploit non-zero ��s in selection
of securities. A prominent example is the long/short equity strategy where securities are
ordered by their predicted returns, from the most positive to the most negative. The
investor then goes long on securities with positive predicted returns and goes short on
securities with negative return predictions. There are many variations in the way that this
strategy is implemented which need not concern us here. What we are interested in is to
see if there are any relationships between the return on long/short (L/S) strategies and
the evidence of market ine¢ ciency as measured by estimated p-values. In time periods
where �i = 0 for all i, (or more accurately when

PN
i=1 �

2
i = O(N �) with � < 1=2), the

L/S strategy is unlikely to perform better than the market return, and could do even worse
if one allows for transaction costs and management fees. But we would expect a higher
return on the L/S strategies relative to the market if there are positive and negative alphas
that the investor can identify and exploit. Therefore, a priori we would expect an inverse
relationship between p-values and returns on L/S strategies relative to the market.

For return on L/S strategies we used Dow Jones Credit Suisse Core Long/Short Equity
Hedge Fund Index that are available monthly from January 2005. This is a subset of the
Dow Jones Core Hedge Fund Index and provides the aggregate performance of long/short
equity funds, and as such is not subject to a selection bias. We denote the monthly return
on this index by rht and consider the relationship between ~rht = rh� � rt, where rt is the
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return on S&P 500 index, and monthly p-values of the Ĵ�;2 tests, which we denote by �̂t.19

The p-values needed for this purpose are already reported in Figure 1. Given the consid-
erable volatility of return data, in Figures 2 & 3 we plot twelve-month moving averages
of returns and p-values computed as ~rht(12) = 1

12

P11
j=0 ~rh;t�j , and �̂t(12) =

1
12

P11
j=0 �̂t�j ,

respectively. Figure 2, depicts the relationship for p-values computed using the CAPM
regressions, and Figure 3 shows the relationship for the p-values computed using the FF
regressions. There is a strikingly negative relationship between the two variables as ex-
pected. The �t is much better when the FF p-values are used, yielding a correlation of
around -0.84. The correlation between ~rht(12) and the p-values computed using CAPM
regressions is -0.74 which is still quite substantial.

7 Concluding Remarks

In this paper we propose a simple test of Sharpe-Lintner CAPM, the J� test, when the
number of securities, N , is large relative to the time dimension, T , of the return series.
We considered two operational versions, Ĵ�;1 and Ĵ�;2 tests, both of which are robust to
non-Gaussianity. The Ĵ�;2 test is expected to be more robust against error cross-sectional
correlation. Using Monte Carlo experiments, designed speci�cally to match the correlations,
volatilities, and other distributional features of the residuals of Fama-French three factor
regressions of individual securities in the Standard & Poor 500 index, we show that the
proposed Ĵ�;1 and Ĵ�;2 tests perform well even when N is much larger than T . Also in
cases where N < T and the standard F test due to GRS can be computed, we still �nd that
the Ĵ�;1 and Ĵ�;2 tests have a much higher power, especially when T is relatively small.
We recommend the use of Ĵ�;2 test (over Ĵ�;1), as it is shown to be relatively robust to
moderately strong degrees of error cross-sectional correlations. It is worth bearing in mind
that under CAPM, we do not expect the errors to be strongly cross-correlated.

Application of the Ĵ�;2 test to all securities in the S&P 500 index with 60 months of
return data at the end of each month over the period September 1989 - September 2011
clearly illustrates the utility of the proposed test. Statistically signi�cant evidence against
Sharpe-Lintner CAPM and Fama-French three factor models is found during periods of
�nancial crisis and market disruptions. Furthermore, a surprisingly strong negative corre-
lation is found between a twelve-month moving average p-values of the Ĵ�;2 test and excess
returns of long/short equity strategies over the period December 2006 to May 2011.

19See Appendix C for further details and the source of the L/S equity hedge fund returns.
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Appendix A: Mathematical Derivations and Proofs

Consider the quadratic form
W0;a = x

0
TAxT ;

and the linear quadratic form

W1;� = x
0
TAxT + 2

�
� 0TMF �T

�1=2
�0AxT ;

where xT = (� 0TMF �T )
1=2PT

t=1 ct"t, c = (c1; c2; :::; cT )
0 = (� 0TMF �T )

�1
MF �T , and A = (aij) is a given

symmetric with non-stochastic elements, aij , � = (�1; �2; :::; �N )
0 is an N � 1 vector of �xed constants.

Elements of A and � could also vary with N , and strictly speaking they should be written as aij;N and
�i;N . But to simplify the notations and without loss of generality we abstract from the subscript N .

Recall that
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Also,
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Since, by assumption, "it are iid with zero means then in the above sums only the terms associated with
t = t0 = s = s0; t = t0 6= s = s0; s = t 6= t0 = s0, and s0 = t 6= t0 = s are non-zero. Speci�cally, for
t = t0 = s = s0 we have

E
h�
"0tA"t

�2i
=

NX
i=1

NX
j=1

NX
i0=1

NX
j0=1

aijai0j0E ("it"jt"i0t"j0t)

=

NX
i=1

a2ii
2;"i +

 
NX
i=1

aii

!2
+ 2

NX
i=1

NX
j=1

aijaji;

where 
2;"i = E("4it)� 3. For t = t0 6= s = s0

E
��
"0tA"t

� �
"0sA"s

��
= [Tr (A)]2 for t 6= s.

For s = t 6= t0 = s0,

E
��
"0tA"t0

� �
"0tA"t0

��
= E

��
"0t0A"t

� �
"0tA"t0

��
= E

�
"0t0AA"t0

�
= Tr(A2):

Similarly, for s0 = t 6= t0 = s
E
��
"0tA"t0

� �
"0t0A"t

��
= Tr(A2):

Using the above results

�
� 0TMF �T

��2
E
h�
x0TAxT

�2i
=

 
TX
t=1

c4t

!24 NX
i=1

a2ii
2;"i +

 
NX
i=1

aii

!2
+ 2

NX
i=1

NX
j=1

aijaji

35
+

"
TX
t=1

TX
s=1

c2t c
2
s �

 
TX
t=1

c4t

!#
[Tr (A)]2 + 2

"
TX
t=1

TX
s=1

c2t c
2
s �

 
TX
t=1

c4t

!#
Tr(A2):

27



But
�PT

t=1

PT
s=1 c

2
t c
2
s

�
=
�PT

t=1 c
2
t

�2
;
PN

i=1 aii = Tr(A),
PN

i=1

PN
j=1 aijaji = Tr(A2), and the above

simpli�es to

�
� 0TMF �T

��2
E
h�
x0TAxT

�2i
=

 
NX
i=1

a2ii
2;"i

! 
TX
t=1

c4t

!
+

 
TX
t=1

c2t

!2 �
2Tr(A2) + [Tr (A)]2

�
;

and since (� 0TMF �T )
�1
=
�PT

t=1 c
2
t

�

E
h�
x0TAxT

�2i
=

 
NX
i=1

a2ii
2;"i

! �PT
t=1 c

4
t

�
�PT

t=1 c
2
t

�2 + 2Tr(A2) + [Tr (A)]2 :

Hence

V ar(W0;a) =

 
NX
i=1

a2ii
2;"i

! �PT
t=1 c

4
t

�
�PT

t=1 c
2
t

�2 + 2Tr(A2): (50)

Finally

V ar (W1;a) = V ar(W0;a) + 4
�
� 0TMF �T

� �
�0A2�

�
+ 4

�
� 0TMF �T

�
E
��
x0TAxT

� �
�0AxT

��
; (51)

but

Cov
�
W0;a;�

0AxT
�

= E
��
x0TAxT

� �
�0AxT

��
=

�
� 0TMF �T

�3=2 TX
t=1

TX
t0=1

TX
s=1

ctct0csE
�
"0tA"t0�

0A"s
�

=
�
� 0TMF �T

�3=2 TX
t=1

c3tE
�
"0tA"t�

0A"t
�

=
�
� 0TMF �T

�3=2 TX
t=1

c3t

!
NX
i=1

NX
j=1

NX
k=1

NX
`=1

aij�`a`kE ("it"jt"kt)

=
�
� 0TMF �T

�3=2 TX
t=1

c3t

!
NX
i=1

NX
`=1

aiia`i�`E
�
"3it
�

=
�
� 0TMF �T

�3=2 TX
t=1

c3t

!
NX
i=1

aiibiE
�
"3it
�
; (52)

where
bi =

XN

`=1
a`i�`;
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Appendix B: Proof of Theorem 3

Using the factor model (23), the correlation coe¢ cient of the errors uit and ujt is given by
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0
i . Using familiar matrix trace inequalities (see, for example, Magnus and Neudecker

(1999, p.204))
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Also since B is a positive semi-de�nite matrix with non-negative eigenvalues, �max(B) � Tr(B), and we
have
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However, since N�1PN
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2
ii � N�1Tr(R2), then we also have N�1PN
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2
ii ! 1, as N ! 1. Finally,

using the results (54) and (55), the J�(D) test statistic de�ned by (22) further simpli�es to

J�(D) =
N�1=2 �(� 0TMF �T ) �̂

0D�1�̂�N
�p

2 + �
2;"qT
!d N(0; 1); (56)

as required.

Appendix C: Data Description and Sources

We downloaded price and dividend data on all 500 securities included in the S&P 500 index at close of
each month from September 1989 to September 2011 (inclusive) using Datastream.20 For example, the
code LS&PCOMP1210 will give the 500 constituents of S&P500 index as of December 2010.To construct
our security return data, the security price (P ) and dividend yield (DY ) are obtained from Datastream, as
speci�ed the table below. We adopted the following rules in selecting individual securities for inclusion in
our analysis. At the end of each month under consideration, we downloaded historical return series on all
500 securities included in the S&P 500 index at the time. We then dropped all securities with less than 60

20We could only download data for 499 securities on September 30, 2008, and it is con�rmed on Standard
& Poor�s website that the S&P 500 index on this day was based on 499 securities.
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months of observations and/or with �ve consecutive zeros in the middle of sample periods.

Variable Description Source (Code)

Pit
Price of security i at the market close of the last day of the
month (t), adjusted for subsequent capital actions.

Datastream (LS&PCOMP, P)

DYit
Dividend per share as a percentage of the share price based on an
anticipated annual dividend and excludes special or once-o¤ dividends.

Datastream (LS&PCOMP, DY)

Pt S&P 500 price index at close of the �nal day of the month (t). Datastream (S&PCOMP, PI)
DYt �Dividend yield�on S&P 500 as a percentage of Pt. Datastream (S&PCOMP, DY)

SMBt
Average return in per cent on the three small portfolios minus
the average return on the three big portfolios.

Ken French�s data library

HMLt
Average return in per cent on two value portfolios minus
the average return on two growth portfolios.

Ken French�s data library

rit
Monthly return of security i in month t in per cent, computed
as 100(Pit � Pi;t�1)=Pi;t�1 +DYit=12.

Datastream

rft
One-month US treasury bill rate in per cent in month t as the
risk-free asset return from Ibbotson Associates.

Ken French�s data library

rmt
Value-weight return on all NYSE, AMEX, and NASDAQ stocks
(from CRSP) in per cent.

Ken French�s data library

rt
Monthly return of S&P500 portfolio at month t in per cent,
computed as 100(Pt � Pt�1)=Pt�1 +DYt=12.

Datastream

rht
Monthly rate of return of Dow Jones Credit Suisse Core Long/Short
Equity Hedge Fund (the end of the month)

Credit Suisse (ROR)
http://www.hedgeindex.com

~rht rht � rt:

Appendix D: Derivation of E
�
t2i
�
and V ar

�
t2i
�
up to O(v�3=2) under Non-Gaussian

Errors

Recall the model
yi: = �i�T + F�i + ui:; (57)

where yi: = (yi1; yi2; :::; yiT )0, �T = (1; 1; :::; 1)0 F0= (f1; f2; :::; fT ), and ui: = (ui1; ui2; :::; uiT )
0. De�ne

�i = ui:=�i; (58)

with E(u2it) = �2i ; so that E(�it) = 0, E(�
2
it) = 1, 
1;i = E(�3it), 
2;i = E(�4it)�3 such that under normality,


`;i = 0 for all i and ` = 1; 2. Note that under Assumptions 2
a and 3, j
`;ij < K for all i and ` = 1; 2.

The t-ratio for testing �i = 0 is given by

t2i =
v

� 0TMF �T

�
�0iHF �i
�0iMG�i

�
, (59)

where �i � IID(0; IT ),
MF = IT � F

�
F0F

��1
F0, HF =MF �T �

0
TMF : (60)

MG = IT �PG; PG = G
�
G0G

��1
G0, G =(F; �T ) ;v = Tr(MG) = T �m� 1: (61)

For notational convenience, without loss of generality, all the results in this section are obtained assuming
that F is nonstochastic.

Initially, we state and proof a number of useful lemmas, before giving the proposition for the expression
of E

�
t2i
�
and V ar

�
t2i
�
up to O(v�3=2) under non-normality:

Lemma 7 (Lieberman 1994) Let � be a T �T symmetric matrix and � a positive de�nite T �T matrix,
and suppose that � � IID(0; IT ), where � = (�1; �2; :::; �T )

0. Denote the pth cumulant of �0�� by �p, and
the m+1 order, m+ r degree generalized cumulant of (�0��)r(�0��) by �rm, and assume that the following
conditions hold:

� Condition 1: For p = 1; 2; :::; �p = O(T ):

� Condition 2: For r = 1; 2; :::; �r0 = E(�0��)r = O(T r):

� Condition 3: For r;m = 1; 2; :::; �rm = O(T `), with ` � r.

Then the Laplace approximate expansion for the rth moment of �0��=�0�� is given by

E

��
�0��

�0��

�r�
=
E[(�0��)r]

[E(�0��)]r
+  rT +O(T�2); (62)
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where

 rT =
r(r + 1)

2

�
E [(�0��)r]�2
[E(�0��)]r+2

�
� r

�
�r1

[E(�0��)]r+1

�
; (63)

and
�r1 = E[(�0��)r�0��]� E[(�0��)r]E(�0��): (64)

Proof. See Lieberman (1994).

Lemma 8 (Moments of Products of Quadratic Forms under Nonnormality): Let � = (�1; �2; :::; �T )
0 �

IID(0; IT ), with E
�
�3t
�
= 
1, E

�
�4t
�
= 
2 + 3, E

�
�5t
�
= 
3 + 10
1, E

�
�6t
�
= 
4 + 15
2 + 10


2
1 + 15, and

suppose that Aj , j = 1; 2; 3, are T � T real symmetric matrices, and �T is a T � 1 vector of ones. Then

E
�
�0A1�

�
= Tr(A1) (65)

E
��
�0A1�

� �
�0A2�

��
= 
2Tr [(A1 �A2)] + Tr (A1)Tr(A2) + 2Tr (A1A2) (66)

E
��
�0A1�

� �
�0A2�

� �
�0A3�

��
= 
4Tr (A1 �A2 �A3) + 
2Tr (A1)Tr (A2 �A3) (67)

+
2Tr (A2)Tr (A1 �A3) + 
2Tr (A3)Tr (A1 �A2) + 4
2Tr [A1 � (A2A3)]

+4
2Tr [A2 � (A1A3)] + 4
2Tr [A3 � (A1A2)] + 2

2
1

�
� 0T (IT �A1)A2 (IT �A3) �T

�
+2
21

�
� 0T (IT �A1)A3 (IT �A2) �T

�
+ 2
21

�
� 0T (IT �A2)A1 (IT �A3) �T

�
+4
21

�
� 0T (A1 �A2 �A3) �T

�
+ Tr (A1)Tr (A2)Tr (A3) + 2Tr (A1)Tr (A2A3)

+2Tr (A2)Tr (A1A3) + 2Tr (A3)Tr (A1A2) + 8Tr (A1A2A3) ;

where � represents the Hadamard (or element-wise) product matrix operator.
Proof. For (65) and (66), see Ullah (2004, Appendix A.5). Result (67) was provided to us through a private
communication by Yong Bao. Also, see Bao and Ullah (2006).

Lemma 9 Suppose that � = (�1; �2; :::; �T )
0 � IID(0; IT ), 
1 = E(�3t ), 
2 = E(�4t )� 3 and 
4 = E

�
�6t
�
�

15
2 � 10
21 � 15, for all t. Then,

E
�
�0HF �

�
= Tr(HF ) = �

0
TMF �T

E
�
�0MG�

�
= Tr(MG) = v

E
h�
�0MG�

�2i
= 
2Tr (MG �MG) + v (v + 2)

E
��
�0HF �

� �
�0MG�

��
= 
2Tr (MG �HF ) + v(� 0TMF �T )

E
h�
�0HF �

�2i
= 
2Tr (HF �HF ) + 3

�
� 0TMF �T

�2
E
h�
"0HF "

�2 �
"0MG"

�i
= 
4Tr (HF �HF �MG) + 2
2Tr (HF )Tr (HF �MG)

+
2Tr (MG)Tr (HF �HF ) + 4
2Tr
�
MG �H2

F

�
+ 4
21

�
� 0T (IT �HF )HF (IT �MG) �T

�
+2
21

�
� 0T (IT �HF )MG (IT �HF ) �T

�
+ 4
21

�
� 0T (HF �HF �MG) �T

�
+ 3 [Tr (HF )]

2 Tr (MG)

where MF , MG, and HF =MF �T �
0
TMF , are de�ned by (60) and (61).

Proof. These results are obtained noting that MGHF = 0 (since MFMG = MG and MG�T = 0), and
Tr(H2

F ) = (�
0
TMF �T )

2, and using the results established in Lemma 8.

Lemma 10 Let A be a real symmetric T � T matrix with eigenvalues �1 � �2 � ::: � �T . Then �1 �
att � �T ; where att is the tth diagonal element of A.
Proof. See Theorem 14 in Chapter11 of Magnus and Neudecker (1999, p.211-212).

Lemma 11 Denote the (t; s) elements of MF , MG; and PG (de�ed in (60) and (61)), by mF;ts, mG;ts

and pG;ts, respectively, and suppose that f 0tft � �2 < 1 for all t, where �2 is a �nite positive constant.
Then for all t we have

0 � mF;tt =
XT

s=1
m2
F;ts � 1, (68)

0 � mG;tt =
XT

s=1
m2
G;ts � 1, (69)
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0 � pG;tt =
XT

s=1
p2G;ts � 1, (70)XT

s=1
mF;ts � �MF <1, (71)XT

s=1
mG;ts � �MG <1; (72)

where �MF and �MG are �nite positive constants.
Proof. (68), (69) and (70) follow immediately using Lemmas 10, since MF , MG and PG are idempotent
and real symmetric matrices, eigenvalues of which are either one or zero. Next we note that

MF �T = �T � F
�
F0F

T

��1
F0�T
T

;

where by Assumption 1 all elements of
�
F0F
T

��1
and F0�T

T
are bounded. Let zF;T =

�
F0F
T

��1
F0�T
T
, and

note that the m elements of zF;T , being the OLS estimates of the coe¢ cients in the regression of 1 on ft
are bounded, and hence

Pm
`=1 jzF;T;`j

2 � �1 <1 for all T; where �1 is a positive constant. Then, the tth

element of MF �T can be written asXT

s=1
mF;ts = 1� f 0tzF;T = 1�

Xm

`=1
ft;`zF;T;`:

Hence, ���XT

s=1
mF;ts

��� � 1 +Xm

`=1
jft;`zF;T;`j ;

and by the assumption
Pm

`=1 jft;`j
2 � �2 <1 ; for all t, and a positive constant, �2, we have���Xm

`=1
ft;`zF;T;`

��� �Xm

`=1
jft;`zF;T;`j �

Xm

`=1
jft;`j2

Xm

`=1
jzF;T;`j2 � �1�2 <1:

Therefore,
PT

s=1mF;ts � �MF <1 follows as required. Similarly, we have
PT

s=1mG;ts � �MG <1.

Lemma 12 Denote the (t; s) elements ofMF ,MG; and PG (de�ed in (60) and (61)), by mF;ts, mG;ts and
pG;ts, respectively, v = T �m � 1, and suppose that f 0tft � �2 < 1 for all t, where �2 is a �nite positive
constant. Then XT

t=1

�XT

s=1
mF;ts

�j
= O (v) , j = 1; 2; 3; 4; (73)XT

t=1
mG;tt

�XT

s=1
mF;ts

�j
= O (v) , j = 1; 2; 3; 4; (74)XT

t=1
pG;tt

�XT

s=1
mF;ts

�2
= O

�
v1=2

�
; (75)XT

t=1

�XT

s=1
mF;ts

�2XT

`=1
mG;t`

�XT

s=1
mF;`s

�2
= O

�
v3=2

�
: (76)

Proof. By (71) in Lemma 11,
PT

t=1

�PT
s=1mF;ts

�j
�
PT

t=1

���PT
s=1mF;ts

���j � v (T=v)�j
MF

= O(v);

j = 1; 2; 3; 4, which establishes (73). By (69) and (71) in Lemma 11,
PT

t=1mG;tt

�PT
s=1mF;ts

�j
�PT

t=1 jmG;ttj
���PT

s=1mF;ts

���j � PT
t=1

���PT
s=1mF;ts

���j = O (v) by (73), which establishes (74). By Cauchy-

Schwarz inequality, and (71) in Lemma 11,

XT

t=1
pG;tt

�XT

s=1
mF;ts

�2
�
rXT

t=1
p2G;tt

rXT

t=1

�XT

s=1
mF;ts

�4
:

But, since 0 � p2G;tt � pG;tt � 1, then
PT

t=1 p
2
G;tt �

PT
t=1 pG;tt = m+ 1; and using (71), we haveXT

t=1
pG;tt

�XT

s=1
mF;ts

�2
�
q
(m+ 1) v (T=v)�4

MF
= O(v1=2);

which establishes (75). Finally,XT

t=1

�XT

s=1
mF;ts

�2XT

`=1
mG;t`

�XT

s=1
mF;`s

�2
�
XT

t=1

���XT

s=1
mF;ts

���2 ����XT

`=1
mG;t`

�XT

s=1
mF;`s

�2���� ;
(77)

but, by Cauchy-Schwarz inequality, and (71) and (69) in Lemma 11, we have����XT

`=1
mG;t`

�XT

s=1
mF;`s

�2���� �
rXT

`=1
m2
G;t`

rXT

`=1

���XT

s=1
mF;`s

���4 �qmG;ttT�4
MF

; (78)
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and substituting (78) into (77) and using (69) yieldXT

t=1

�XT

s=1
mF;ts

�2XT

`=1
mG;t`

�XT

s=1
mF;`s

�2
�
XT

t=1

���XT

s=1
mF;ts

���2qmG;ttT�4
MF

� �4
MF

q
v3 (T=v)3 = O(v3=2);

which establishes (76).

Lemma 13 Suppose that Aj = (aj;ts), for j = 1; 2; 3 are T � T real symmetric matrices. Then,

Tr (A1 �A2) =
XT

t=1
a1;tta2;tt; (79)

Tr (A1 �A2 �A3) =
XT

t=1
a1;tta2;tta3;tt; (80)

� 0T (IT �A1)A2 (IT �A3) �T =
XT

t=1

XT

s=1
a1;tta2;tsa3;ss; (81)

� 0T (A1 �A2 �A3) �T =
XT

t=1

XT

s=1
a1;tsa2;tsa3;ts: (82)

Proof. By direct computations.

Lemma 14 Consider the matricesMG; PG and HF , de�ned by (60) and (61), and v = Tr (MG). Suppose
f 0tft � K <1 for all t. Then,

Tr (HF �HF �MG) = O (v) , (83)

Tr (HF �MG) = O (v) , (84)

Tr (HF �HF ) = O (v) ; (85)

Tr (PG �PF ) � Tr (PF ) = m+ 1; (86)

Tr (PG �HF ) = O(v1=2); (87)

� 0T (IT �HF )HF (IT �MG) �T = O
�
v2
�
, (88)

� 0T (IT �HF )MG (IT �HF ) �T = O(v3=2); (89)

and
� 0T (HF �HF �MG) �T = O(v3=2): (90)

Proof. Denote the (t; s) element of MF , MG and PG by mF;ts, mG;ts and pG;ts, respectively, and observe

that the (h; `) element of HF is
�PT

s=1mF;hs

��PT
s=1mF;`s

�
. Then using (80) in Lemma 13, and (74) in

Lemma 12 yields

Tr (HF �HF �MG) =
XT

t=1
mG;tt

�XT

s=1
mF;ts

�4
= O (v) ;

which establishes (83). Similarly, to establish (84) note that using (79) in Lemma 13, and (74) in Lemma
12 we have

Tr (HF �MG) =
XT

t=1
mG;tt

�XT

s=1
mF;ts

�2
= O (v) :

Now using (79) in Lemma 13, then (73) in Lemma 12 we obtain

Tr (HF �HF ) =
XT

t=1

�XT

s=1
mF;ts

�4
= O (v) ;

that establishes (85). Result (86) follows since
PT

t=1 p
2
G;tt �

PT
t=1 pG;tt = m+ 1; recalling that 0 � p2G;tt �

pG;tt � 1 by (70). Now using (79) in Lemma 13, and (75) in Lemma 12 we have

Tr (PG �HF ) =
XT

t=1
pG;tt

�XT

s=1
mF;ts

�2
= O(v1=2);

which establishes (87). Further, using (81) in Lemma 13, (73) and (74) in Lemma 12 we have

� 0T (IT �HF )HF (IT �MG) �T =
XT

t=1

�XT

s=1
mF;ts

�3XT

`=1
mG;``

�XT

s=1
mF;`s

�
= O(v2),

which establishes (88). Next, again using (81) in Lemma 13, and (76) in Lemma 12 we obtain

� 0T (IT �HF )MG (IT �HF ) �T =
XT

t=1

�XT

s=1
mF;ts

�2XT

`=1
mG;t`

�XT

s=1
mF;`s

�2
= O(v3=2); (91)

which establishes (89). Finally, using (82) in Lemma 13 and noting that the (h; `) element of HF is�PT
s=1mF;hs

��PT
s=1mF;`s

�
, it is easily seen that � 0T (HF �HF �MG) �T is the same as the right hand

side of (91), so that

� 0T (HF �HF �MG) �T = �
0
T (IT �HF )MG (IT �HF ) �T = O(v3=2) (92)

which establishes (90).
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Lemma 15 Suppose that � = (�1; �2; :::; �T )
0 � IID(0; IT ), and E(�3t ) = 
1, E(�

4
t ) = 
2 + 3, E(�

5
t ) =


3+10
1, and E(�
6
t ) = 
4+10


2
1+15
2+15, for all t. Suppose that Assumptions 1 and 2

a hold and that:
(i) f 0tft � K < 1 for all t, where �2 is �nite constant, and; (ii) E(j"itj6+�) < K < 1 for some � > 0
exists. Then,

�2 = E
�
(�0MG�)

2�� �E(�0MG�)
�2
= 
2Tr (MG �MG) + 2v = O(v); (93)

�11 = E[(�0HF �)
�
�0MG�

�
]� E(�0HF �)E(�

0MG�)

= 
2Tr [(MG �HF )] = O(v); (94)

�21 = E
h�
�0HF �

�2 �
�0MG�

�i
� E[(�0HF �)

2]E(�0MG�)

= 6
2
�
� 0TMF �T

�
Tr (MG �HF ) + 4


2
1

�
� 0T (IT �HF )HF (IT �MG) �T

�
+6
21

�
� 0T (IT �HF )MG (IT �HF ) �T

�
+O(v) = O(v2); (95)

where MG, HF , and MF are de�ned by (60) and (61), and v = Tr (MG).
Proof. The results (93) and (94) immediately follow using Lemmas 9 and 14. The result (95) follows
using Lemmas 9 and 14, and the equality (92), noting that Tr

�
H2
F

�
= [Tr (HF )]

2, and Tr
�
MG �H2

F

�
=

Tr (HF )Tr (MG �HF ) ; since H2
F = Tr (HF )HF .

Proposition 16 Consider the regression model (57), and suppose that Assumptions 1 and 2a hold and
that: (i) f 0tft � K <1 for all t, and; (ii) E(j"itj8+�) < K <1 for some � > 0 exists. Then

E
�
t2i
�
=

v

v � 2 + 
2;i
S0v
v3=2

+
W0;iv

v2
=

v

v � 2 +O(v�3=2); (96)

V ar
�
t2i
�
=

�
v

v � 2

�2
2 (v � 1)
(v � 4) +


21;iS1v + 
2;iS2v

v
+

21;iS3v + 
2;iS4v

v3=2
+
W1;iv

v2
(97)

where ti is the t-ratio de�ned by (59), v = T �m� 1,

S0v =
v1=2Tr (PG �HF )

(� 0TMF �T )
; (98)

S1v = �
8 [� 0T (IT �HF )HF (IT �MG) �T ]

(� 0TMF �T )
2 , S2v = vqT � 3; (99)

S3v = �
v1=212 [� 0T (IT �HF )MG (IT �HF ) �T ]

(� 0TMF �T )
2 , S4v = �

v1=210Tr (PG �HF )

� 0TMF �T
; (100)

G, MF , MG, PG; HF , are de�ned by (60) and (61), Sjv = O(1) for j = 0; 1; ::; 4, �T = (1; 1; :::; 1)0,
W0;iv and W1;iv are O(1) functions of F, and v, and 
`;i, ` = 1; 2; :::; 6, which are at most O(1), are
given by 
1;i = E(�3it), 
2;i = E(�4it) � 3; 
3;i = E(�5it) � 10
1;i, 
4;i = E(�6it) � 10
21;i � 15
2;i � 15,

5;i = E

�
�7it
�
�21
3;i�35
2;i
1;i�105
1;i, 
6;i = E

�
�8it
�
�28
4;i�56
3;i
1;i�35
22;i�210
2;i�280
21;i�105;

where �it = uit=�i; and

qT =
�XT

t=1
c4t

�
=
�XT

t=1
c2t

�2
; (101)

with ct being the tth element of c =MF �T =�
0
TMF �T .

Proof. Using a slightly extended version of Laplace approximation of moments of the ratio of quadratic forms
by Lieberman (1994), that allows � de�ned in Lemma 7 to be a positive semi-de�nite matrix, substituting
� = HF =MF �T �

0
TMF and � =MG into the Lieberman�s formula, we have

E
�
t2i
�
=

v

� 0TMF �T

�
E (�0iHF �i)

E (�0iMG�i)
+  i;1v

�
+O(v�2) (102)

where

 i;1v =

�
E(�0iHF �i)�i;2
[E(�0iMG�i)]

3

�
�
�

�i;11
[E(�0iMG�i)]

2

�
; (103)

�i;2 = E
�
(�0iMG�i)

2�� �E(�0iMG�i)
�2

(104)

�i;11 = E[(�0iHF �i)
�
�0iMG�i

�
]� E(�0iHF �i)E(�

0
iMG�i). (105)

Using Lemma 9, it is easily seen that

v

� 0TMF �T

E (�0iHF �i)

E (�0iMG�i)
= 1
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and hence

v i;1v
� 0TMF �T

=
v

� 0TMF �T

�
E(�0iHF �i)�i;2
[E(�0iMG�i)]

3
� �i;11
[E(�0iMG�i)]

2

�
=

v

� 0TMF �T

 
(� 0TMF �T )

�

2;iTr (MG �MG) + 2v

�
v3

�

2;iTr (MG �HF )

v2

!

=
2

v
+ 
2;iKv

where

Kv =
1

v

�
Tr (MG �MG)

v
� Tr (MG �HF )

� 0TMF �T

�
: (106)

Noting that MG = IT � PG with PG = G (G0G)
�1
G0 with G =(F; �T ), we can write the �rst term in

the square brackets of (106) as

Tr (MG �MG)

v
=

1

v
Tr [(IT �PG)� (IT �PG)] (107)

=
1

v
[T � 2Tr (PG) + Tr (PG �PG)] = 1�

Tr (PG)

v
+
Tr (PG �PG)

v
:

Similarly, the second term in the square brackets of (106) can be written as

Tr (MG �HF )

� 0TMF �T
=

1

� 0TMF �T
Tr [(IT �PG)�HF ] (108)

=
1

� 0TMF �T
[Tr (HF )� Tr (PG �HF )] = 1�

Tr (PG �HF )

� 0TMF �T
:

Substituting (107) and (108) into (106), then using Tr (PG �PG) = O(1) and Tr (PG �HF ) = O(v1=2);
which are established by (86) and (87) in Lemma 14, we have

Kv =
1

v3=2
v1=2Tr (PG �HF )

� 0TMF �T
+
1

v2
Tr (PG �PG)�

1

v2
Tr (PG) =

S0v
v3=2

+O(v�2) (109)

where

S0v =
v1=2Tr (PG �HF )

(� 0TMF �T )
; (110)

which is O(1) by (87) and (47), so that

E
�
t2i
�
= 1 +

2

v
+ 
2;i

S0v
v3=2

+O(v�2): (111)

However, since
v

v � 2 �
�
1 +

2

v

�
=

4

v (v � 2) = O(v�2)

and using Lemma 15 ensures that the three conditions in Lieberman�s lemma are satis�ed. Lemma 7 now
implies that the last term can be rewritten as v�2W0;iv, where W0;iv = O(1) is a function of F, and v.
Then for given values of 
`;i, ` = 1; 2; 3; 4, we have

E
�
t2i
�
=

v

v � 2 + 
2;i
S0v
v3=2

+
W0;iv

v2
; (112)

which establishes (96). To prove (97), we �rst note that

E
�
t4i
�
=

v2

(� 0TMF �T )
2E

"�
�0iHF �i
�0iMG�i

�2#
; (113)

but by Lammas 7 and 9 we have

E

"�
�0iHF �i
�0iMG�i

�2#
=

E
h
(�0iHF �i)

2
i

[E (�0iMG�i)]
2 +  i;2v +O(v�2)

=

2;iTr (HF �HF )

v2
+
3 (� 0TMF �T )

2

v2
+  i;2v +O(v�2); (114)

where

 i;2v = 3

"
E
�
(�0iHF �i)

2
�
�i;2

[E(�0iMG�i)]
4

#
� 2

�
�i;21

[E(�0iMG�i)]
3

�
=
3E
�
(�0iHF �i)

2
�
�i;2

v4
� 2�i;21

v3
:
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Using results in Lemmas 9 and 15, and noting that Tr (HF �HF ) = O(v) and Tr (MG �MG) = O(v)
(see Lemma 14 for a proof), it can be shown that

3E
�
(�0iHF �i)

2
�
�i;2

v4
=

3
h

2;iTr (HF �HF ) + 3 (�

0
TMF �T )

2
i �

2;iTr (MG �MG) + 2v

�
v4

=
9
2;i (�

0
TMF �T )

2
Tr (MG �MG)

v4
+
18 (� 0TMF �T )

2

v3
+O(v�2).

Also

2�i;21
v3

=
12
2;i (�

0
TMF �T )Tr (MG �HF )

v3
+
8
21 [�

0
T (IT �HF )HF (IT �MG) �T ]

v3

+12
21;i
�
� 0T (IT �HF )MG (IT �HF ) �T

�
+O(v�2);

so that

 i;2T =
18 (� 0TMF �T )

2

v3
+
9
2;i (�

0
TMF �T )

2
Tr (MG �MG)

v4

�
12
2;i (�

0
TMF �T )Tr (MG �HF )

v3
� 8
21 [�

0
T (IT �HF )HF (IT �MG) �T ]

v3

�
12
21;i [�

0
T (IT �HF )MG (IT �HF ) �T ]

v3
+O(v�2). (115)

Substituting (114) and (115) into (113) yields

E
�
t4i
�

= 3 +
18

v
+

2;iTr (HF �HF )

(� 0TMF �T )
2 +

9
2;iTr (MG �MG)

v2
�
12
2;iTr (MG �HF )

v (� 0TMF �T )
(116)

�8

2
1 [�

0
T (IT �HF )HF (IT �MG) �T ]

v (� 0TMF �T )
2 �

12
21;i [�
0
T (IT �HF )MG (IT �HF ) �T ]

v (� 0TMF �T )
2 +O(v�2):

Using the result (111) we have

�
E
�
t2i
��2

=

�
1 +

2

v

�2
+ 
2;i

2Tr (MG �MG)

v2
� 
2;i

2Tr (MG �HF )

v (� 0TMF �T )
+O(v�2): (117)

However"
3 +

18

v
�
�
1 +

2

v

�2#
�
�

v

v � 2

�2
2 (v � 1)
(v � 4) = �

4
�
19v3 � 70v2 + 76v � 16

�
v2 (v � 2)2 (v � 4)

= O(v�2); (118)

and also, noting that HF = mm0 with m =MF �T =
�PT

s=1mF;1s;
PT

s=1mF;2s; :::;
PT

s=1mF;Ts

�0
and

(IT �HF ) = diag
�
m(2)

�
, m(2) = m�m, where � is the Hadamard matrix operator (or element-wise

operator), we have Tr [(HF �HF )] =m
0
(2)m(2), so that


2;iTr (HF �HF )

(� 0TMF �T )
2 = 
2;i

m0
(2)m(2)

(m0m)2
: (119)

Recalling that c =MF �T =�
0
TMF �T , we can rewrite

PT
t=1 c

4
t =m

0
(2)m(2)= (m

0m)
4 and

PT
t=1 c

2
t =m

0m= (m0m)
2,

so that qT de�ned by (101) can be rewritten as

qT =

 
TX
t=1

c4t

!
=

 
TX
t=1

c2t

!2
=
m0
(2)m(2)

(m0m)2
= O(v�1): (120)

Using (116), (117), (118), (119) and (120), and noting that, by (107) and (108),

7Tr (MG �MG)

v
� 10Tr (MG �HF )

� 0TMF �T
= �3� 10Tr (PG �HF )

� 0TMF �T
+O(v�1);

we conclude that

V ar
�
t2i
�

= E
�
t4i
�
�
�
E
�
t2i
��2

=

�
v

v � 2

�2
2 (v � 1)
(v � 4) +


21;iS1v + 
2;iS2v

v
+

21;iS3v + 
2;iS4v

v3=2
+O(v�2); (121)
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where

S1v = �
8 [� 0T (IT �HF )HF (IT �MG) �T ]

(� 0TMF �T )
2 ; S2v = vqT � 3; (122)

S3v = �
v1=212 [� 0T (IT �HF )MG (IT �HF ) �T ]

(� 0TMF �T )
2 ; S4v = �

v1=210Tr (PG �HF )

� 0TMF �T
: (123)

S1v = O(1) by (88) and (47), S2v = O(1) by (120) and (47), S3v = O(1) by (89) and (47), and S4v = O(1)
by (87) and (47). Lieberman�s lemma implies that the last term can be rewritten as v�2W1;iv, where W1;iv

is a function of F, v, and 
`;i, for ` = 1; 2; :::; 6. It is easily seen that W1;iv = O(1), and the result (97)
follows immediately.

Appendix E: Correlation between t2i and t
2
j when Corr(uit; ujt) = �ij under Gaus-

sianity

We begin with the following lemma:

Lemma 17 Suppose that � = (�1; �2; :::; �T )
0 � IIDN(0; IT ). Then,

E
��
v=
�
�0MG�

��r	
=

vr

(v � 2) (v � 4) ::: (v � 2r) , (124)

so long as v > 2r, where MG is de�ned by (61), v = Tr (MG).
Proof. The result follows noting that �0MG� s �2v, and then using established results for the moments of
the inverse-�2 distribution. Also see Smith (1988) and Ullah (1974).

Now, using (59) and denoting, wT = � 0TMF �T , under the null we have

t2i =
�0iHF �i
�0iMG�i

v

wT
, for i = 1; 2; :::; N;

where MG, HF , and MF are de�ned by (60) and (61) with v = Tr (MG), �i � N(0; IT ) with �i =
(�i1; �i2; ::::; �iT )

0, �it = uit=�i (de�ned by (58)). Consider t2i and t
2
j (i 6= j) and denote the the correlation

of the associated CAPM regression errors by Corr(uit;ujt) = Corr(�it;�jt) = �ij . Then,

�j = ��i +
p
1� �2� , with E

�
��0i
�
= 0; (125)

where � � IIDN(0; IT ), and we have dropped the subscript ij from �ij for notational convenience.

Note that Corr
�
t2i ; t

2
j

�
= Cov

�
t2i ; t

2
j

�
=V ar

�
t2i
�
, and V ar

�
t2i
�
= V ar

�
t2j
�
=
�

v
v�2

�2
2(v�1)
v�4 . Now using

Lemma 9, V ar (�0iHF �i=wT ) = 2, and it is easily seen that
�
V ar

�
t2i
���1� [V ar (�0iHF �i=wT )]

�1
= O(v�1).

Therefore, since
��Cov �t2i ; t2j��� � V ar

�
t2j
�
<1, we have

Corr
�
t2i ; t

2
j

�
=

Cov
�
t2i ; t

2
j

�
V ar (�0iHF �i=wT )

+O(v�1).

Next, since E
�
t2i
�
= E

�
t2j
�
, then Cov

�
t2i ; t

2
j

�
= E

�
t2i t

2
j

�
�
�
E
�
t2i
��2
. Also using Lemma 9 E

�
t2i
�2 �

[E (�0iHF �i=wT )]
2
=
�

v
v�2

�2
� 1 = O(v�1). Therefore

Corr
�
t2i ; t

2
j

�
=
E
�
t2i t

2
j

�
� [E (�0iHF �i=wT )]

2

V ar (�0iHF �i=wT )
+O(v�1). (126)

Now

E
�
t2i t

2
j

�
= E

��
�0iHF �i=wT
�0iMG�i=v

��
�0jHF �j=wT

�0jMG�j=v

��
= E

�
�0iHF �i
wT

�0jHF �j
wT

�
+ dT (127)

where

dT = E

(
�0iHF �i
wT

�0jHF �j
wT

"
1

(�0iMG�i=v)
�
�0jMG�j=v

� � 1#) .
But, by Cauchy-Schwarz inequality we have

dT � E

������0iHF �i
wT

�0jHF �j
wT

"
1

(�0iMG�i=v)
�
�0jMG�j=v

� � 1#�����
�

s
E

�����0iHF �i
wT

�0jHF �j
wT

����2
vuutE

����� 1

(�0iMG�i=v)
�
�0jMG�j=v

� � 1�����
2

: (128)
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Similarly,

E

�����0iHF �i
wT

�0jHF �j
wT

����2 �
s
E

�����0iHF �i
wT

����4
s
E

�����0jHF �j
wT

����4;
and using results in Ullah (2004), we have E

��� �0iHF �i
wT

���2 = O(1), which also ensures that E
��� �0iHF �i

wT

�0jHF �j
wT

���2 =
O(1), at most.

For notational simplicity let

Xi = �
0
iMG�i=v and Xj = �

0
jMG�j=v; (129)

and write the second product of (128) as E
��

1
XiXj

� 1
�2�

> 0. Also de�ne the �nite positive constant,

Bv = supE

"�
1

XiXj
� 1
�2#

:

But noting that 1
Xi

> 0 and 1
Xj

> 0, and using the results that sup ff(z) + g(z) : z 2 Zg � sup ff(z) : z 2 Zg+
sup fg(z) : z 2 Zg, sup (aY ) = a supY for a > 0 and sup (bY ) = b inf Y for b < 0, we have

Bv = sup

�
E

�
1

X2
iX

2
j

�
� 2E

�
1

XiXj

�
+ 1

�
� supE

�
1

X2
iX

2
j

�
� 2 inf E

�
1

XiXj

�
+ 1. (130)

First, by Cauchy-Schwarz inequality and noting that E
�

1
X4
i

�
= E

�
1
X4
j

�
, E
�

1
X2
iX

2
j

�
�
r
E
�

1
X4
i

�s
E

�
1
X4
j

�
=

E
�

1
X4
i

�
; or

supE

�
1

X2
iX

2
j

�
= E

�
1

X4
i

�
: (131)

Next, noting that E
�

1
Xi

�
= E

�
1
Xj

�
and V ar

�
1
Xi

�
= V ar

�
1
Xj

�
we have

E

�
1

XiXj

�
= E

�
1

Xi

�
E

�
1

Xj

�
+ Cov

�
1

Xi
;
1

Xj

�
=

�
E

�
1

Xi

��2
+ V ar

�
1

Xi

�
��

1
Xi

; 1
Xj

�;

where ��
1
Xi

; 1
Xj

� is the correlation coe¢ cient between 1
Xi

and 1
Xj
. Thus, inf E

�
1

XiXj

�
> 0 is achieved

when ��
1
Xi

; 1
Xj

� = �1, since E � 1
Xi

�
> 0 and V ar

�
1
Xi

�
> 0:

inf E

�
1

XiXj

�
= 2

�
E

�
1

Xi

��2
� E

�
1

X2
i

�
. (132)

Therefore, substituting (131) and (132) into (130), then using (124) in Lemma 17, we obtain

Bv =
v4

(v � 2) (v � 4) (v � 6) (v � 8) �
2v2 (v � 6)

(v � 4) (v � 2)2
+ 1 = O(v�1);

and thus conclude that

E

����� 1

(�0iMG�i=v)
�
�0jMG�j=v

� � 1�����
2

� Bv = O(v�1). (133)

Substituting (133) into (128), together with (127) and (126), we have

Corr
�
t2i ; t

2
j

�
=
E
�
(�0iHF �i=wT )

�
�0jHF �j=wT

��
� [E (�0iHF �i=wT )]

2

V ar (�0iHF �i=wT )
+O(v�1=2).

However, by (125),�
�0iHF �i

� �
�0jHF �j

�
=
�
�0iHF �i

� �
�2ij�

0
iHF �i + 2�ij

q
1� �2ij�

0
iHF �j +

�
1� �2ij

�
�0jHF �j

�
.

Under Gaussanity, noting that E
h
(�0iHF �i=wT )

2
i
= Tr

�
H2
F

�
+ 2 [Tr(HF )]

2 = 3 and E [�0iHF �i=wT ] = 1;

we have
E
��
�0iHF �i=wT

� �
�0jHF �j=wT

��
= 3�2ij +

�
1� �2ij

�
,

38



so that

Corr
�
t2i ; t

2
j

�
=
3�2ij +

�
1� �2ij

�
� 1

2
+O(v�1=2) = �2ij +O(v�1=2).

Also, it is clear that, when �ij = 0, Corr
�
t2i ; t

2
j

�
= 0 (i.e. no O(v�1=2) term involves). Therefore

Corr
�
t2i ; t

2
j

�
=

�
�2ij +O(v�1=2); for i; j such that �ij 6= 0;
0; for i; j such that �ij = 0:

(134)

Since by assumption R is a sparse matrix, denoting the maximum number of non-zero elements in the rows
of R by r < K <1, we have

N�1 NP
i=1

NP
j=1

Corr(t2i ; t
2
j ) = 1 +

2

N

NP
i=2

i�1P
j=1

Corr(t2i ; t
2
j ) = 1 + (N � 1)�2 +O

�
2r

v1=2

�
= 1 + (N � 1)�2 +O

�
v�1=2

�
; (135)

as required.

Appendix F: Proof for ZNT !p 0 as N and T !1 in no particular order under
Gaussianity and cross-sectionally correlated errors

Recall that

ZNT = N�1=2
NX
i=1

�
t2i �

v

v � 2

�
�N�1=2 ��� 0TMF �T

�
�̂0D�1�̂�N

�
,

where �
� 0TMF �T

�
�̂0D�1�̂ =

NX
i=1

t2i

�
T �̂2i
v�2i

�
=

NX
i=1

t2i

�
�0iMG�i

v

�
;

t2i =
�0iHF �i
�0iMG�i

v

wT
;

and wT = � 0TMF �T . Then

ZNT = N�1=2
NX
i=1

�
t2i �

v

v � 2

�
�N�1=2

"
NX
i=1

t2i

�
�0iMG�i

v

�
�N

#

= N�1=2
NX
i=1

�
t2i � t2i

�
�0iMG�i

v

��
�
�
v
p
N

v � 2 �
p
N

�
: (136)

We know that (by construction) E(ZNT ) = 0. Then it is su¢ cient to �nd conditions under which

V ar (ZNT ) = N�1
NX
i=1

NX
j=1

cov

�
t2i � t2i

�0iMG�i
v

; t2j � t2j
�0jMG�j

v

�
! 0:

For use below we note that

V ar (ZNT ) = N�1
NX
i=1

var(t2i �Wi) + 2N
�1

NX
i=2

i�1X
j=1

cov
�
t2i �Wi; t

2
j �Wj

�
; (137)

where

Wi = t2i
�0iMG�i

v
= �0iHF �i=wT : (138)

Firstly, consider var(t2i �Wi) = var(t2i )+var(Wi)�2cov(t2i ;Wi), and note that E(Wit
2
i ) can be written

equivalently as
E(Wit

2
i ) = E(W 2

i =Xi);

where Xi = �
0
iMG�i=v, as de�ned by (129). But

E(W 2
i =Xi) = E(W 2

i ) + E

�
W 2
i

�
1

Xi
� 1
��

;

and by Cauchy-Schwarz inequality

E

�
W 2
i

�
1

Xi
� 1
��

�
�
E(W 4

i )
�1=2 

E

�
1

Xi
� 1
�2!1=2

;
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and

E

�
1

Xi
� 1
�2

= E

�
1

X2
i

+ 1� 2

Xi

�
:

Using the result (124) we have

E

�
1

X2
i

+ 1� 2

Xi

�
=

v2

(v � 2)(v � 4) + 1�
2v

v � 2 =
8 + 2v

(v � 2)(v � 4) :

It is also easily seen that E(W 4
i ) < K <1, and��E(W 2

i =Xi)� E(W 2
i )
�� = O

�
v�1=2

�
for v > 4: (139)

Using (139), and recalling that E(W 2
i ) = 3, var(t2i ) =

�
v

v�2

�2
2(v�1)
v�4 , var(Wi) = E(W 2

i ) � 1 = 2,

cov(t2i ;Wi) = E(Wit
2
i )� v

v�2 , we have

var(t2i �Wi) = var(t2i ) + var(Wi)� 2cov(t2i ;Wi)

=

�
v

v � 2

�2
2(v � 1)
v � 4 + 2� 2

�
E(Wit

2
i )�

v

v � 2

�
=

�
v

v � 2

�2
2(v � 1)
v � 4 + 2� 2

�
3� v

v � 2

�
� 2

�
E(W 2

i =Xi)� E(W 2
i )
�

=
18v2 � 64v + 64
(v � 2)2 (v � 4)

+O
�
v�1=2

�
:

Hence,

N�1
NX
i=1

var(t2i �Wi) = O
�
v�1=2

�
, for all values of N . (140)

To derive the covariance terms we �rst note that (for i 6= j)

cov
�
t2i �Wi; t

2
j �Wj

�
= cov(t2i ; t

2
j )� cov(t2i ;Wj)� cov(Wi; t

2
j ) + cov(Wi;Wj): (141)

Set �j = �ji�i +
q
1� �2ji�ji, where �ji is distributed independently of �i and �ji s N(0; IT ). Note that

�ij = �ji. Then
cov(Wi;Wj) = E(WiWj)� 1;

and it is easily seen that
E(WiWj) = �2jiE(W

2
i ) + (1� �2ji):

But from Lemma 9, E(W 2
i ) = 3, and cov(Wi;Wj) = 2�

2
ji. Next

E
�
t2iWj

�
= E

�
t2iE (Wj j�i )

�
=
�2ijE

�
�0iHF �it

2
i

�
+ (1� �2ij)wTE(t

2
i )

wT

= �2ijE
�
Wit

2
i

�
+ (1� �2ij)E(t

2
i ):

Similarly,
E
�
t2jWi

�
= �2jiE

�
Wjt

2
j

�
+ (1� �2ji)E(t

2
j ) = E

�
t2iWj

�
:

Recalling that E(Wi) = 1, E(t2i ) = v=(v � 2), and using E(t2i ) � 1 = v=(v � 2) � 1 = 2=(v � 2) and (139),
we have

E
�
Wit

2
j

�
� E(WiWj) = �2jiE

�
Wjt

2
j

�
+ (1� �2ji)E(t

2
j )� 3�2ji � (1� �2ji)

= O(v�1=2),

so that
cov(t2i ;Wj)� cov(Wi;Wj) = O(v�1=2):

Collecting terms we have

cov
�
t2i �Wi; t

2
j �Wj

�
= cov(t2i ; t

2
j )� cov(Wi;Wj) +O(v�1=2); for i 6= j:

However, in Appendix E it is shown that cov(t2i ; t
2
j )� cov(Wi;Wj) = O(v�1=2). Hence, under Assumption

3 and assuming that R is sparse we have��cov �t2i �Wi; t
2
j �Wj

��� = O
�
v�1=2

�
, if �ij 6= 0

= 0; if �ij = 0:
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If the maximum number of non-zero elements of the rows of R is denoted by r then�����N�1
NX
i=2

i�1X
j=1

cov
�
t2i �Wi; t

2
j �Wj

������ = O

�
rp
v

�
;

and for a �xed r we have �����N�1
NX
i=2

i�1X
j=1

cov
�
t2i �Wi; t

2
j �Wj

������! 0, as v !1. (142)

From (137), (140) and (142), and recalling E (ZNT ) = 0, we conclude that ZNT !p 0 as N and T !1; in
no particular order.

Appendix G: Derivation of plimN;T!1(N � 1) b�2 under Gaussianity and cross-
sectionally correlated errors

First of all we state a lemma:

Lemma 18 Suppose that x s N(�; �2), then

E
�
x2I(x2 � a2)

�
=

�
�2 + �2

� h
�
�a� �

�

�
� �

��a� �

�

�i
(143)

+� (�� a)�(
a+ �

�
)� � (a+ �)�(

a� �

�
):

Proof. Let z = (x� �)=�, and note that

E
�
x2I(x2 � a2)

�
=

Z (a��)=�

�(a+�)=�

�
�2z2 + �2 + 2��z

�
�(z)dz;

where �(z) = (2�)�1=2 exp(�0:5z2). ButZ (a��)=�

�(a+�)=�
z2�(z)dz = [�z�(z)](a��)=��(a+�)=� +�

�a� �

�

�
� �

��a� �

�

�
= �

�a� �

�

�
� �

��a� �

�

�
�
�a+ �

�

�
�(
a+ �

�
)�

�a� �

�

�
�(
a� �

�
):

Z (a��)=�

�(a+�)=�
z�(z)dz = �(

a+ �

�
)� �(

a� �

�
)

Hence

E
�
x2I(x2 � a2)

�
=
�
�2 + �2

� h
�
�a� �

�

�
� �

��a� �

�

�i
+ � (�� a)�(

a+ �

�
)� � (a+ �)�(

a� �

�
):

Noting that I(x2 � a2) = 1� I(x2 > a2), then

E
�
x2I(x2 > a2)

�
=

�
�2 + �2

�
�
�
�2 + �2

� h
�
�a� �

�

�
� �

��a� �

�

�i
�� (�� a)�(

a+ �

�
) + � (a+ �)�(

a� �

�
)

or for future use

E
�
x2I(x2 > a2)

�
=

�
�2 + �2

� h
1� �

�a� �

�

�
+�

��a� �

�

�i
(144)

+� (a� �)�(
a+ �

�
) + � (a+ �)�(

a� �

�
):

Consider now the estimator of the pair-wise error correlations in the denominator of J�;2:

(N � 1) b�2 = 2

N

PN
i=2

Pi�1
j=1 �̂

2
ijI
�
v�̂2ij > �N

�
;

and write it as
(N � 1) b�2 = 2

N

PN
i=2

Pi�1
j=1 �̂

2
ijI
�
�̂2ij > a2

�
;
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where (using T for v )

a =
1p
T
��1

�
1� p

2(N � 1)

�
:

Also note that as a �rst-order approximation �̂ij s N(�ij ;
1��2ij
T

): It is clear that all elements in the

summation for b�2 lie in the range [0; 1], and hence are uniformly integrable, and the limit ofc�2 as N and
T !1 is given by

p lim
N;T!1

(N � 1) b�2 = lim
N;T!1

2

N

PN
i=2

Pi�1
j=1 E

�
�̂2ijI

�
�̂2ij > a2

��
:

But the expression for E
�
�̂2ijI

�
�̂2ij > a2

��
depends on the value of �ij . Under the assumption that R is

sparse, there are only a �nite number of non-zero elements in each row (column) of R. Denote the number
of non-zero o¤-diagonal elements of the ith row of R by ri and note that the above probability limit can be
written as

lim
N;T!1

2

N

PN
i=2

Pi�1
j=1 E

�
�̂2ijI

�
�̂2ij > a2

��
= lim

N;T!1

2

N

X
for all�ij=0

E
�
�̂2ijI

�
�̂2ij > a2

� ���ij = 0 �
+ lim
N;T!1

2

N

X
for all�ij 6=0

E
�
�̂2ijI

�
�̂2ij > a2

� ���ij 6= 0 �
= lim

N;T!1
(N � �r)E

�
�̂2ijI

�
�̂2ij � a2

� ���ij = 0 �
+ lim
N;T!1

2

N

X
for all�ij 6=0

E
�
�̂2ijI

�
�̂2ij > a2

� ���ij 6= 0 �
where �r =

PN
i=1 ri=N , is �nite. Using Lemma 18 with � = 0, we have

E
�
x2I(x2 � a2) j� = 0

�
= �2

h
1� �

� a
�

�
+�

��a
�

�i
+ 2�a�(

a

�
)

= 2�2
h
1� �

� a
�

�i
+ 2�a�(

a

�
)

Also, when � = 0, then �2 = 1=T , and a=� = ��1
�
1� p

2(N�1)

�
. Further

�

�
��1

�
1� p

2(N � 1)

��
= 1� p

2(N � 1) :

Therefore,

E
�
�̂2ijI

�
�̂2ij > a2

� ���ij = 0 �
=

2

T

�
1� �

�
��1

�
1� p

2(N � 1)

���
+2

1

T
��1

�
1� p

2(N � 1)

�
�

�
��1

�
1� p

2(N � 1)

��
=

1

T

p

(N � 1) +
2

T
��1

�
1� p

2(N � 1)

�
�

�
��1

�
1� p

2(N � 1)

��
and

lim
N;T!1

(N � �r)E
�
�̂2ijI

�
�̂2ij > a2

� ���ij = 0 �
= lim

N;T!1

1

T

p(N � �r)
(N � 1) +

lim
N;T!1

2(N � �r)
T

��1
�
1� p

2(N � 1)

�
�

�
��1

�
1� p

2(N � 1)

��
:

The �rst term clearly tends to zero as N and T ! 1, in any order. The limiting behavior of the second
term is more complicated. But using numerical techniques, it can be shown that (for a �xed p)

XN = (N � �r)��1
�
1� p

2(N � 1)

�
�

�
��1

�
1� p

2(N � 1)

��
= O(ln(N)),
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and the second term also tends to zero if log(N)=T ! 0. (For p = 0:05; �r = 1 and N = 20; 000; it is easily
seen that XN = 0:58.)

Consider now the term
2

N

X
for all�ij 6=0

E
�
�̂2ijI

�
�̂2ij > a2

� ���ij 6= 0 �
and recall that the number of non-zero, distinct, o¤-diagonal elements of R is N�r=2; and hence

2

N

X
for all�ij 6=0

E
�
�̂2ijI

�
�̂2ij > a2

� ���ij 6= 0 �! �nite limit.

To obtain this limit, using Lemma 18 we note that

E
�
�̂2ijI

�
�̂2ij > a2

� ���ij 6= 0 �
=

 
1� �2ij
T

+ �2ij

!241� �
0@pTa�pT�ijq

1� �2ij

1A+�
0@�pTa�pT�ijq

1� �2ij

1A35
+

q
1� �2ij
p
T

�
a� �ij

�
�

0@pTa+pT�ijq
1� �2ij

1A+
q
1� �2ij
p
T

�
a+ �ij

�
�

0@pTa�pT�ijq
1� �2ij

1A ;

where as before a = 1p
T
��1

�
1� p

2(N�1)

�
: For each �ij 6= 0, since

p
Ta = ��1

�
1� p

2(N�1)

�
= O(ln(N)),

then  
1� �2ij
T

+ �2ij

!241� �
0@pTa�pT�ijq

1� �2ij

1A+�
0@�pTa�pT�ijq

1� �2ij

1A35! �2ij as N and T !1,

such that ��1
�
1� p

2(N�1)

�
=
p
T ! 0. (Note that for p = 0:05 and N = 20; 000, then ��1

�
1� p

2(N�1)

�
=

4:71.)
Similarly, as N and T !1 we haveq

1� �2ij
p
T

�
a� �ij

�
�

0@pTa+pT�ijq
1� �2ij

1A+
q
1� �2ij
p
T

�
a+ �ij

�
�

0@pTa�pT�ijq
1� �2ij

1A! 0:

Collecting all the above results, we have

p lim
N;T!1

(N � 1) b�2 = lim
N!1

2

N

PN
i=2

Pi�1
j=1 �

2
ij ,

which is �nite, given sparse nature of the error correlation matrix, R.

Appendix H: Simulating Multivariate Non-normal Random Variates

The objective is to generate N random variables ui, i = 1; 2; :::; N such that (in population) E(ui) = 0,
E(u2i ) = �2i , E(u

3
i ) = m3i, E(u4i ) = m4i and E(uiuj) = �ij ; i 6= j for i; j = 1; 2; ::::; N .

The problem of generating multivariate non-normal random variables have been addressed in the lit-
erature by Vale and Maurelli (1983) and further discussed by Harwell and Serlin (1989) and Headrick and
Sawilowsky (1999). Following Fleishman (1978), Vale and Maurelli (1983 VM) propose generating ui as,

ui = ai + bi"i + ci"
2
i + di"

3
i ; i = 1; 2; :::; N;

where "i s IIDN(0; 1) and E("i"j) = �";ij . The unknown parameters ai,bi, ci, di, �";ij are obtained using
the following relationships (see equations (2)-(5) in VM)

ai + ci = 0; (145)

b2i + 6bidi + 2c
2
i + 15d

2
i = �2i ; (146)

2ci(b
2
i + 24bidi + 105d

2
i + 2) = m3i; (147)

24[bidi + c2i (1 + b2i + 28bidi) + d2i (12 + 48bidi + 141c
2
i + 225d

2
i )] = m4i; (148)

for i = 1; 2; :::; N , and (see equation (11) in VM)

�ij = �";ij(bibj + 3bidj + 3dibj + 9didj) + �2";ij(2cicj) + �3";ij(6didj); (149)
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for i 6= j = 1; 2; :::; N:
The VM procedure is shown to work reasonably well for non-extreme values of skewness and kurtosis

and when N is small. But even if one follows VM�s two step procedure where the equations (145)-(148)
are solved �rst, the procedure still requires solving a large number of cubic equations, and hoping that the
solution of (149) for �";ij lies in the admissible range of [�1; 1]. No proof is provided that such a solution
exists.

In what follows we propose a new more compact algorithm for generation of non-normal correlated
random variables as a generalization of the standard Cholesky factor approach used routinely to generate
correlated normal random variables. Let u = (u1; u2; :::; uN )

0, " = ("1; "2; :::; "N )
0, and write each ui as a

linear combination of "
ui =

XN

j=1
qij"j ; for i = 1; 2; :::; N;

or in matrix notation
u = Q";

where qij is the (i; j) element of Q.
Our approach is to generate "j ; j = 1; 2; :::; N; as independent draws from non-normal distributions

with E("j) = 0; E("2j ) = 1; E("3j ) = m";3j and E("4j ) = m";4j : Note also that �ij is determined by Q and

is given by the (i; j) element of QQ0 scaled by �i�j where �2i =
XN

j=1
q2ij . For given values of �ij and �

2
i ;

Q can be obtained as the Cholesky factor of E(uu0) = V. In such a case Q can be a lower or an upper
triangular matrix with strictly positive diagonal elements. It is assumed that V is non-singular, and as a
result Q will also be non-singular.

Consider now the problem of generating "0js such that E(u
3
i ) = mi3 and E(u4i ) = mi4 . To this end

note that

m2i = �2i = E(u2i ) =
XN

j=1
q2ij , for i = 1; 2; :::; N;

m3i = E(u3i ) = E

24X
j

X
j0

X
s

X
s0

qijqij0qis"j"j0"s

35 =XN

j=1
q3ijm";3j , for i = 1; 2; :::; N;

and

m4i = E(u4i ) = E

24X
j

X
j0

X
s

X
s0

qijqij0qisqis0"j"j0"s"s0

35 :
But since "0js are independent draws with mean 0 and a unit variance we have

E ("j"j0"s"s0) = m";4j ; if j = j0 = s = s0

= 1, if j = j0 and s = s0 or if j = s and j0 = s0 or if j = s0 and j0 = s

= 0 otherwise.

Hence, it readily follows that

m4i =

NX
j=1

q4ijm";4j + 3
X
j 6=s

q2ijq
2
is: (150)

But X
j 6=s

q2ijq
2
is =

NX
j=1

NX
s=1

q2ijq
2
is �

NX
j=1

q4ij =

 
NX
j=1

q2ij

!2
�

NX
j=1

q4ij = �4i �
NX
j=1

q4ij

Therefore, (150) can be written as

m4i � 3�4i =
XN

j=1
q4ij (m";4j � 3) :

Let �"j = m";4j � 3 and �i = m4i � 3�4i ; and write the above relations in matrix notation, namely

�u = Q(4)�";

where � = (�1; �2; :::; �N)0, �" = (�"1; �"2; :::; �"N )0 and Q(4) = Q�Q�Q�Q, where � is the Hadamard
matrix operator (or element-wise operator). Similarly, for the third moments we have

m3 = Q(3)m";3;
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where m3 = (m3;1;m3;2; ::::;m3;N ), and m";3 = (m";3;1;m";3;2; ::::;m";3;N ). Since Q is a triangular matrix
with strictly positive diagonal elements it follows that Q(3) and Q(4) are also non-singular and hence
invertible. Thus

m";3 = Q�1
(3)m3 (151)

�" = Q�1
(4)�u: (152)

Denoting �2 = (�21; �
2
2; :::; �

2
N)

0 we also have �2 = Q(2)�N .
Having computed m";3i and m";4i we can now generate "i as

"i = ai + bi�i + ci�
2
i + di�

3
i ; i = 1; 2; :::; N; (153)

where �i s IIDN(0; 1) and the coe¢ cients ai; bi; ci and di are determined so that E("i) = 0; E("2i ) = 1,
E("3i ) = m";3i and E("4i ) = m";4i, using Fleishman�s formula

ai + ci = 0; (154)

b2i + 6bidi + 2c
2
i + 15d

2
i = 1; (155)

2ci(b
2
i + 24bidi + 105d

2
i + 2) = m";3i; (156)

24[bidi + c2i (1 + b2i + 28bidi) + d2i (12 + 48bidi + 141c
2
i + 225d

2
i )] = �"i: (157)
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Table 1: Summary statistics for estimated �, variance, skewness and kurtosis measures of
residuals from CAPM regressions estimated for all securities in the S&P 500 index with at
least sixty months of return data using �ve-year estimation windows (sixty months) at the
end of each month September 1989-September 2011

Mean Median 2.5% Quantile 97.5% Quantile
�̂2i;� 65.60 44.72 12.81 249.89

̂1;i;� 0.18 0.14 -0.89 1.46

̂2;i;� 1.00 0.38 -0.71 6.74
�̂1;i;� 1.10 0.51 0.24 2.26
�̂2;i;� 0.10 0.04 -0.91 1.47
�̂3;i;� 0.20 0.24 -1.55 1.72

Notes: �̂i� is estimated using the FF regressions, ri;�t � rf;�t = �̂i� + �̂1;i�
�
rm;�t � rf;�t

�
+ �̂2;i�SMBt� +

�̂3iHMLt�+ûi;�t, for i = 1; 2; :::; N� , and t = 1; 2; :::; 60, where N� denotes the number of securities at the estimation

windows � = 1989M9; 1989M10; ::::; 2011M9. �̂2i;� = m̂2;i� 
̂1;i� = m̂3;i�=m̂
3=2
2;i� and 
̂2;i� = m̂4;i�=m̂

2
2;i� � 3, which

are computed using the FF residuals, where m̂s;i� = (60)
�1P60

t=1

�
ûi;�t � ûi;�

�s
and ûi;� = (60)�1

P60
t=1 ûi;�t, for

s = 2; 3; 4: All securities in the S&P 500 index are included except those with less than sixty months of observations

and/or with �ve consecutive zeros in the middle of sample periods. Under normal errors we have 
1;i = 
2;i = 0.

Table 2: Size and power of SS, WS, GRS and J� tests in the case of models with a single
factor

Table 2, Panel A: With Single Factor, Normal Errors
N�b No Cross Correlation �b = 1=4 �b = 1=2 �b = 3=5

(T;N) 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

Size: �i = 0 for all i
SS 60 4.2 4.8 4.7 4.6 4.3 5.2 4.3 5.1 7.0 7.7 8.5 7.8 9.1 9.7 12.6 12.4

100 4.5 5.3 5.1 4.8 4.5 4.7 5.3 5.1 7.4 7.9 8.3 7.7 10.5 10.0 11.5 12.2

WS 60 4.3 5.0 4.6 4.8 4.3 4.8 4.4 4.6 7.6 8.2 9.0 8.6 9.8 9.9 13.1 13.2
100 4.4 5.0 4.8 4.6 3.8 5.3 5.2 5.1 7.9 8.1 8.1 7.8 10.4 11.4 12.9 13.4

GRS 60 5.3 N/A N/A N/A 4.3 N/A N/A N/A 4.4 N/A N/A N/A 4.5 N/A N/A N/A
100 5.0 N/A N/A N/A 5.0 N/A N/A N/A 4.5 N/A N/A N/A 4.5 N/A N/A N/A

Ĵ�;1 60 6.2 6.0 5.6 5.1 6.1 6.6 5.6 5.8 9.6 10.2 11.0 10.1 14.0 13.6 16.3 15.9
100 6.1 6.0 5.9 5.3 6.1 6.5 6.6 5.6 10.1 10.4 11.3 10.4 13.3 12.7 15.5 16.0

Ĵ�;2 60 6.1 5.9 5.4 5.0 6.0 6.1 5.3 5.6 6.4 6.9 6.5 5.5 6.8 6.3 6.2 7.2
100 6.0 5.9 5.8 5.2 5.9 6.1 6.3 5.5 6.8 6.4 6.8 5.4 6.8 6.2 7.1 6.9

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, otherwise �i = 0.
SS 60 21.8 25.9 36.3 48.9 20.8 26.2 34.9 47.9 22.2 25.5 35.2 48.9 21.1 28.2 35.4 45.7

100 34.7 45.2 60.7 81.4 36.6 47.0 62.8 80.7 35.1 45.6 59.9 77.9 35.3 44.5 56.8 72.6

WS 60 23.0 32.0 43.7 60.2 23.4 32.3 43.0 59.2 25.4 30.8 40.4 58.2 25.5 32.4 41.3 52.1
100 43.0 55.2 73.0 91.2 44.3 58.7 74.0 90.3 42.0 55.3 70.9 87.6 41.5 51.9 67.2 83.3

GRS 60 22.1 N/A N/A N/A 21.0 N/A N/A N/A 30.0 N/A N/A N/A 35.7 N/A N/A N/A
100 77.2 N/A N/A N/A 80.1 N/A N/A N/A 90.1 N/A N/A N/A 93.3 N/A N/A N/A

Ĵ�;1 60 77.6 89.8 97.8 99.9 78.6 89.7 97.7 99.8 73.8 87.2 96.9 99.9 73.3 86.9 95.3 99.5
100 93.9 99.3 100.0 100.0 95.1 98.9 100.0 100.0 94.0 98.3 100.0 100.0 93.5 98.3 99.9 100.0

Ĵ�;2 60 77.2 89.7 97.8 99.9 77.9 89.2 97.7 99.8 64.6 80.3 93.2 99.7 54.6 68.1 81.4 94.5
100 93.8 99.3 100.0 100.0 94.9 98.8 100.0 100.0 88.9 96.7 99.7 100.0 83.0 94.3 98.7 100.0
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Table 2, continued, Panel B: With Single Factor, Non-normal Errors
N�b No Cross Correlation �b = 1=4 �b = 1=2 �b = 3=5

(T;N) 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

Size: �i = 0 for all i
SS 60 11.0 12.7 19.9 34.0 10.3 13.8 19.9 33.4 11.8 14.0 18.5 33.4 11.8 17.4 22.8 32.2

100 15.1 22.8 36.9 64.6 16.3 23.7 35.2 63.3 15.5 21.3 33.8 57.2 18.4 24.5 32.6 49.9

WS 60 9.2 11.6 15.1 25.1 8.3 11.5 16.5 24.9 12.7 12.7 16.9 26.8 13.1 16.5 19.1 28.7
100 12.2 17.4 27.4 49.0 14.0 18.3 27.1 51.6 16.0 18.6 28.2 44.1 17.2 20.8 28.3 39.0

GRS 60 5.3 N/A N/A N/A 5.5 N/A N/A N/A 5.3 N/A N/A N/A 5.0 N/A N/A N/A
100 6.1 N/A N/A N/A 4.9 N/A N/A N/A 6.2 N/A N/A N/A 5.6 N/A N/A N/A

Ĵ�;1 60 6.5 6.6 6.2 6.7 7.2 6.6 6.4 6.5 11.8 10.2 10.2 11.0 13.8 13.3 15.9 17.6
100 6.3 5.6 6.4 6.8 6.1 7.0 6.8 6.9 10.8 10.8 11.5 10.1 13.4 14.3 15.1 16.4

Ĵ�;2 60 6.5 6.6 6.1 6.6 6.9 6.2 6.2 6.3 7.9 6.6 6.1 6.6 7.6 6.5 7.1 7.5
100 6.2 5.5 6.4 6.5 5.9 6.4 6.7 6.6 7.1 6.8 6.5 5.5 6.7 6.5 6.7 5.8

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, otherwise �i = 0.
SS 60 31.2 43.6 61.7 85.0 31.8 43.5 57.7 83.2 30.6 42.1 57.0 79.8 29.2 41.0 54.8 74.1

100 53.1 74.2 89.2 99.3 55.9 73.6 90.6 99.2 51.5 67.1 88.0 98.8 50.6 64.7 81.8 97.5

WS 60 33.1 46.9 64.1 87.0 33.3 46.2 62.6 87.1 32.2 44.6 61.2 81.5 32.3 43.3 55.8 76.1
100 58.5 78.0 92.0 99.7 59.1 77.2 92.6 99.6 55.4 70.5 90.7 99.3 52.5 68.3 84.6 98.0

GRS 60 23.1 N/A N/A N/A 21.2 N/A N/A N/A 30.6 N/A N/A N/A 34.4 N/A N/A N/A
100 77.2 N/A N/A N/A 81.3 N/A N/A N/A 89.0 N/A N/A N/A 93.1 N/A N/A N/A

Ĵ�;1 60 76.8 90.9 98.1 100.0 76.7 90.6 97.1 100.0 75.0 88.4 97.3 100.0 73.5 85.4 93.8 99.6
100 93.6 98.9 100.0 100.0 94.1 99.1 100.0 100.0 93.7 98.2 99.9 100.0 90.9 97.9 99.7 100.0

Ĵ�;2 60 76.7 90.8 98.1 100.0 75.7 90.0 96.9 100.0 66.0 81.1 93.6 99.6 56.5 69.0 80.6 95.1
100 93.5 98.9 100.0 100.0 93.9 99.0 100.0 100.0 89.0 96.4 99.8 100.0 81.4 93.1 98.2 100.0

Notes: The data is generated as yit = �i+�1if1t+uit; i = 1; 2; ::; N ; t = 1; 2; :::; T , f1t = �f1+�f1f1;t�1+
p
h1t �1t,

h1t = �h1+ �1h1h1;t�1+ �2h1�
2
1;t�1, �1t � IIDN(0; 1), t = �49; :::; 0; 1; :::; T with f1;�50 = h1;�50 = 0, �f1 = 0:53,

�f1 = 0:06, �h1 = 0:89, �1h1 = 0:85, �2h1 = 0:11. We generate the idiosyncratic errors, ut = (u1t; u2t; :::; uNt)
0,

according to ut = Q"t, where "t = ("1t; "2t; :::; "Nt)
0, and Q = D1=2P with D = diag(�21; �

2
2; :::; �

2
N )

0 and P being

a Cholesky factor of correlation matrix of ut, R, which is an N � N matrix used to calibrate the cross correlation

of returns. We consider the following design of generating R: (i) No cross-sectional correlation, R = IN ; (ii) Cross

sectionally correlated errors, R = IN + bb
0 � �B2;where b = (b1; b2; ::::; bN )0; �B = diag(b), we draw the �rst and the

last Nb (< N) elements of b as Uniform(0:7; 0:9), and set the remaining middle elements to 0. We set Nb = bN�bc;
where bAc is the largest integer part of A. We examine �b = 0:25; 0:50 and 0:60. For non-normal case, uit are

generated following steps 1-4 of the procedure in Subsection 5.1, using skewness and kurtosis measures, 
1;i and 
2;i.

�2i , 
1;i, 
2;i and �`i for ` = 1; 2; 3; are randomly drawn from their respective empirical distributions, see Subsection

5.1 for details. SS and WS are the signed and singed rank tests of Gungor and Luger (2009), which are distributed

as �2N and applicable for one-factor model. GRS is the F test due to Gibbons et al. (1989) which is distributed as

FN;T�N�m; and is applicable when T > N + m + 1. N/A signi�es that the GRS statistic can not be computed.

Ĵ�;1 is the propose large N test which is robust to non-Gaussian errors. Ĵ�;2 is the modi�ed version of the Ĵ�;1 test

which is more robust to cross-sectional correlations; Values of J� are compared to a positive one-sided critical value

of the standard normal distribution. All tests are conducted at the 5% signi�cance level. Experiments are based on

2,000 replications.
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Table 3: Size and power of GRS and J� tests in the case of models with three factors

Panel A: With Three Factors, Normal Errors
N�b No Cross Correlation �b = 1=4 �b = 1=2 �b = 3=5

(T;N) 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

Size: �i = 0 for all i
GRS 60 6.0 N/A N/A N/A 5.1 N/A N/A N/A 4.0 N/A N/A N/A 5.0 N/A N/A N/A

100 5.0 N/A N/A N/A 5.5 N/A N/A N/A 4.8 N/A N/A N/A 4.3 N/A N/A N/A

Ĵ�;1 60 6.6 6.3 5.5 5.9 6.7 6.6 5.6 7.1 10.1 11.1 11.6 11.5 13.1 15.3 15.6 15.1
100 6.0 5.8 5.4 5.3 6.6 6.7 6.3 5.8 10.9 11.8 11.0 9.9 12.9 14.1 16.2 16.1

Ĵ�;2 60 6.5 6.2 5.4 5.8 6.1 5.9 5.4 6.9 6.1 6.9 6.9 6.6 6.7 6.5 7.0 6.4
100 5.9 5.8 5.2 5.3 6.3 6.2 6.0 5.8 6.9 7.0 6.8 5.7 6.4 6.8 6.7 6.6

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, otherwise �i = 0.
GRS 60 14.8 N/A N/A N/A 15.2 N/A N/A N/A 20.3 N/A N/A N/A 24.3 N/A N/A N/A

100 68.2 N/A N/A N/A 68.9 N/A N/A N/A 84.0 N/A N/A N/A 88.6 N/A N/A N/A

Ĵ�;1 60 66.3 79.3 92.2 99.4 65.9 81.0 92.8 99.1 64.7 77.4 91.7 98.7 62.4 75.9 86.8 97.0
100 88.8 96.7 99.9 100.0 88.8 96.9 99.7 100.0 87.6 96.5 99.6 100.0 85.3 96.1 99.3 100.0

Ĵ�;2 60 66.0 79.2 92.0 99.3 65.2 80.2 92.5 99.0 53.9 66.3 85.4 97.4 45.0 54.8 65.9 83.8
100 88.8 96.7 99.9 100.0 88.3 96.8 99.7 100.0 81.7 93.8 99.0 99.9 71.8 86.9 95.0 99.4

Panel B: With Three Factors, Non-normal Errors
N�b No Cross Correlation �b = 1=4 �b = 1=2 �b = 3=5

(T;N) 50 100 200 500 50 100 200 500 50 100 200 500 50 100 200 500

Size: �i = 0 for all i
GRS 60 5.5 N/A N/A N/A 4.8 N/A N/A N/A 5.2 N/A N/A N/A 5.5 N/A N/A N/A

100 5.1 N/A N/A N/A 5.5 N/A N/A N/A 5.3 N/A N/A N/A 4.5 N/A N/A N/A

Ĵ�;1 60 6.0 6.8 6.4 5.8 6.0 7.3 5.8 6.5 10.6 10.7 9.8 12.2 12.6 13.8 15.4 15.8
100 6.5 6.8 5.9 5.4 7.3 6.9 5.8 6.5 9.9 9.9 11.5 10.7 12.5 14.6 16.9 15.6

Ĵ�;2 60 5.8 6.8 6.3 5.7 5.6 6.7 5.3 6.1 7.0 6.0 6.5 7.0 6.4 7.3 7.1 7.2
100 6.4 6.6 5.8 5.2 7.1 6.5 5.4 6.3 6.2 6.1 6.9 5.6 6.2 7.2 6.9 6.2

Power: �i � IIDN(0; 1) for i = 1; 2; :::; N� with N� = bN��c, otherwise �i = 0.
GRS 60 14.5 N/A N/A N/A 14.5 N/A N/A N/A 20.3 N/A N/A N/A 23.9 N/A N/A N/A

100 67.4 N/A N/A N/A 70.5 N/A N/A N/A 83.4 N/A N/A N/A 87.1 N/A N/A N/A

Ĵ�;1 60 68.0 82.8 93.2 99.2 66.1 83.8 92.6 99.2 66.1 78.1 91.8 98.9 61.2 77.4 85.9 95.8
100 90.0 97.4 99.8 100.0 88.4 97.0 99.8 100.0 87.0 96.9 99.6 100.0 85.5 95.4 99.2 100.0

Ĵ�;2 60 67.8 82.5 93.2 99.2 65.3 82.9 92.5 99.2 53.9 67.3 84.6 96.8 43.0 56.4 64.4 81.9
100 90.0 97.4 99.8 100.0 87.9 96.9 99.8 100.0 81.9 93.0 99.0 100.0 72.1 86.7 94.6 99.3

Notes: The data is generated as yit = �i +
P3
`=1 �`if`t + uit; i = 1; 2; ::; N ; t = 1; 2; :::; T , f`t = �f` + �f`f`;t�1 +p

h`t �`t, h`t = �h` + �1h`h`;t�1 + �2h`�
2
`;t�1, �`t � IIDN(0; 1), t = �49; :::; T with f`;�50 = 0 and h`;�50 = 0,

` = 1; 2; 3, �f` = 0:53; 0:19; 0:19, �f` = 0:06; 0:19; 0:05, �h` = 0:89; 0:62; 0:80, �1h` = 0:85; 0:74; 0:76, �2h` =

0:11; 0:19; 0:15, for ` = 1; 2; 3, respectively. The SS and WS tests are not included since they are not applicable when

m > 1. See also notes to Table 2.
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Table 4: Summary statistics for p-values of Ĵa;2 test, cross-sectional averages of measures
of departure from non-normality and average pair-wise correlations of residuals from CAPM
and FF regressions of securities in the S&P 500 index using �ve year estimation windows
(sixty months) at the end of the months 1989M09-2011M09

Average skewness
& excess kurtosis

measures

Rejection frequency
for normality tests at �

Average pair-wise
correlations

N�
p-value
of Ĵ�;2


̂1� 
̂2� 
1;i� = 0 
2;i� = 0

1;i� = 0

2;i� = 0

�̂� �̂2�
c�2�

PANEL A: CAPM regressions
Mean 476 0.59 0.18 1.12 0.24 0.28 0.31 0.03 0.03 0.01
Median 477 0.74 0.17 1.11 0.23 0.27 0.30 0.01 0.03 0.00
Min 462 0.00 -0.01 0.38 0.13 0.12 0.15 0.01 0.02 0.00
Max 487 1.00 0.35 2.06 0.34 0.46 0.47 0.09 0.05 0.02

stand. dev. 6.3 0.40 0.08 0.41 0.05 0.09 0.08 0.03 0.01 0.00
PANEL B: Fama-French regressions

Mean 476 0.52 0.18 1.00 0.22 0.25 0.28 0.01 0.03 0.00
Median 477 0.58 0.19 0.97 0.22 0.24 0.28 0.01 0.03 0.00
Min 462 0.00 0.02 0.38 0.12 0.11 0.14 0.00 0.02 0.00
Max 487 0.99 0.33 1.70 0.30 0.39 0.42 0.03 0.03 0.01

stand. dev. 6.3 0.35 0.08 0.33 0.05 0.07 0.07 0.01 0.00 0.00

Notes: Reported summary statistics in PANEL A are of the values which are computed using CAPM regression

residuals, ri;�t � rf;�t = �̂i� + �̂1;i�
�
rm;�t � rf;�t

�
+ ûi;�t, for t = 1; 2; :::; 60, and i = 1; 2; :::; N� , and the month

ends � = 1989M09; 1989M10; :::; 2011M09. 
̂`� = N�1
�

PN�
i=1 
̂`;i� for ` = 1; 2; 
̂1;i� = m̂3;i�=m̂

3=2
2;i� and 
̂2;i� =

m̂4;i�=m̂
2
2;i� � 3 with m̂s;i� = (60)�1

P60
t=1 û

s
i;�t. Skewness statistic for testing 
1;i� = 0 is SKi� = T 
̂21;i�=3 s �21;

and the Kurtosis statistic for testing 
2;i� = 0 is KRi� = T 
̂22;i�=24 s �21. Jarque and Bera (1987) statistic

for testing 
1;i� = 
2;i� = 0 is SKi� + KRi� s �22. Rejection frequency refers to the proportion of normality

tests rejected out of the N� tests carried at the end of each month � . �̂� =
2

N(N�1)
PN�1
i=1

PN
j=i+1 �̂�;ij , �̂

2
� =

2
N(N�1)

PN�1
i=1

PN
j=i+1 �̂

2
�;ij with �̂�;ij = û0i:� ûj:�=(û

0
i:� ûi:� )

1=2(û0j:� ûj:� )
1=2, ûi:� =

�
ûi;�1; ûi;�2:::; ûi;�T

�0, andc
�2� =

2
N(N�1)

PN
i=2

Pi�1
j=1 �̂

2
�;ijI

�
�̂2�;ij >

�N
v

�
, �N� is chosen such that Pr

�
�21 > �N�

�
= 0:1= (N� � 1), v = T �

m�1. Reported summary statistics in PANEL B are of the values which are computed using FF regression residuals,
ri;�t� rf;�t = �̂i� + �̂1;i�

�
rm;�t � rf;�t

�
+ �̂2;i�SMBt� + �̂3iHMLt� + ûi;�t, for t = 1; 2; :::; 60, and i = 1; 2; :::; N� ,

and the month ends � = 1989M09; 1989M10; :::; 2011M09.

Figure 1: Plots of the evolution of p-values of Ĵ�;2 test based on CAPM and FF regressions
of securities in the S&P 500 index using �ve year estimation windows (sixty months) at
the end of the months 1989M09-2011M09

Notes: Reported plots are the p-values of Ĵ�;2 test, which are computed using CAPM regressions, ri;�t �
rf;�t = �̂i�+�̂i� (rm;�t � rf;�t)+ûi;�t and FF three factor regressions, ri;�t�rf;�t = �̂i�+�̂1;i� (rm;�t � rf;�t)+

�̂2;i�SMBt� + �̂3iHMLt� + ûi;�t, for t = 1; 2; :::; 60, and i = 1; 2; :::; N� , of the month ends estimation win-

dows � = 1989M09; 1989M10; :::; 2011M09.
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Figure 2: Monthly rate of returns of Dow Jones Credit Suisse Core Long/Short Equity
Hedge Fund Index relative to S&P500 returns, and p-values of Ĵ�;2 test based on CAPM
regressions over the period December 2006 to September 2011

The long/short return variable, ~rht(12), is computed as ~rht(12) = 1
12

P11
j=0 ~rh;t�j , where ~rht = rht � rt, rht

is the return on Dow Jones Credit Suisse Core Long/Short Equity Hedge Fund Index, and rt is the return

on S&P 500 index. �̂� (12) = 1
12

P11
j=0 �̂��j , where �̂� is the p-values of the Ĵ�;2 test at the end of month � ;

computed using CAPM regressions estimated on samples of 60 months. See the notes to Table 4 for details

of CAPM regressions.

Figure 3: Monthly rate of return of Dow Jones Credit Suisse Core Long/Short Equity
Hedge Fund Index relative to S&P500 return, and p-values of Ĵ�;2 test based on Fama-
French regressions over the period December 2006 to September 2011

See the notes to Figure 2. See the notes to Table 4 for details of Fama-French regressions.
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